Dong, J.W.[Jin-Wei],
Xiao, X.M.[Xiang-Ming],
Sheldon, S.[Sage],
Biradar, C.[Chandrashekhar],
Xie, G.S.[Gui-Shui],
Mapping tropical forests and rubber plantations in complex landscapes
by integrating PALSAR and MODIS imagery,
PandRS(74), No. 1, November 2012, pp. 20-33.
Elsevier DOI
1212
PALSAR; MODIS; Evergreen forest; Deciduous forest; Rubber plantation;
Hainan
BibRef
Senf, C.[Cornelius],
Pflugmacher, D.[Dirk],
van der Linden, S.[Sebastian],
Hostert, P.[Patrick],
Mapping Rubber Plantations and Natural Forests in Xishuangbanna
(Southwest China) Using Multi-Spectral Phenological
Metrics from MODIS Time Series,
RS(5), No. 6, 2013, pp. 2795-2812.
DOI Link
1307
BibRef
Chen, B.Q.[Bang-Qian],
Wu, Z.X.[Zhi-Xiang],
Wang, J.[Jikun],
Dong, J.W.[Jin-Wei],
Guan, L.M.[Li-Ming],
Chen, J.M.[Jun-Ming],
Yang, K.[Kai],
Xie, G.S.[Gui-Shui],
Spatio-temporal prediction of leaf area index of rubber plantation
using HJ-1A/1B CCD images and recurrent neural network,
PandRS(102), No. 1, 2015, pp. 148-160.
Elsevier DOI
1503
Leaf area index
BibRef
Fan, H.[Hui],
Fu, X.H.[Xiao-Hua],
Zhang, Z.[Zheng],
Wu, Q.[Qiong],
Phenology-Based Vegetation Index Differencing for Mapping of Rubber
Plantations Using Landsat OLI Data,
RS(7), No. 5, 2015, pp. 6041-6058.
DOI Link
1506
BibRef
Kou, W.[Weili],
Xiao, X.M.[Xiang-Ming],
Dong, J.W.[Jin-Wei],
Gan, S.[Shu],
Zhai, D.L.[De-Li],
Zhang, G.[Geli],
Qin, Y.W.[Yuan-Wei],
Li, L.[Li],
Mapping Deciduous Rubber Plantation Areas and Stand Ages with PALSAR
and Landsat Images,
RS(7), No. 1, 2015, pp. 1048-1073.
DOI Link
1502
BibRef
Ye, S.[Su],
Rogan, J.[John],
Sangermano, F.[Florencia],
Monitoring rubber plantation expansion using Landsat data time series
and a Shapelet-based approach,
PandRS(136), 2018, pp. 134-143.
Elsevier DOI
1802
Time series, Shapelet, Rubber plantations, Landsat, Forest mapping
BibRef
Zhai, D.L.[De-Li],
Dong, J.[Jinwei],
Cadisch, G.[Georg],
Wang, M.C.[Ming-Cheng],
Kou, W.L.[Wei-Li],
Xu, J.C.[Jian-Chu],
Xiao, X.M.[Xiang-Ming],
Abbas, S.[Sawaid],
Comparison of Pixel- and Object-Based Approaches in Phenology-Based
Rubber Plantation Mapping in Fragmented Landscapes,
RS(10), No. 1, 2018, pp. xx-yy.
DOI Link
1802
BibRef
Chen, B.Q.[Bang-Qian],
Xiao, X.M.[Xiang-Ming],
Wu, Z.X.[Zhi-Xiang],
Yun, T.[Tin],
Kou, W.[Weili],
Ye, H.C.[Hui-Chun],
Lin, Q.H.[Qing-Huo],
Doughty, R.[Russell],
Dong, J.[Jinwei],
Ma, J.[Jun],
Luo, W.[Wei],
Xie, G.S.[Gui-Shui],
Cao, J.H.[Jian-Hua],
Identifying Establishment Year and Pre-Conversion Land Cover of
Rubber Plantations on Hainan Island, China Using Landsat Data during
1987-2015,
RS(10), No. 8, 2018, pp. xx-yy.
DOI Link
1809
BibRef
Chen, G.[Gang],
Thill, J.C.[Jean-Claude],
Anantsuksomsri, S.[Sutee],
Tontisirin, N.[Nij],
Tao, R.[Ran],
Stand age estimation of rubber (Hevea brasiliensis) plantations using
an integrated pixel- and object-based tree growth model and annual
Landsat time series,
PandRS(144), 2018, pp. 94-104.
Elsevier DOI
1809
Stand age estimation, Rubber plantation,
Geographic object-based image analysis, Landsat time series, Tree growth model
BibRef
Gao, S.P.[Shu-Peng],
Liu, X.L.[Xiao-Long],
Bo, Y.C.[Yan-Chen],
Shi, Z.T.[Zheng-Tao],
Zhou, H.M.[Hong-Min],
Rubber Identification Based on Blended High Spatio-Temporal
Resolution Optical Remote Sensing Data: A Case Study in Xishuangbanna,
RS(11), No. 5, 2019, pp. xx-yy.
DOI Link
1903
Rubber trees.
BibRef
Yun, T.[Ting],
Jiang, K.[Kang],
Hou, H.[Hu],
An, F.[Feng],
Chen, B.Q.[Bang-Qian],
Jiang, A.[Anna],
Li, W.Z.[Wei-Zheng],
Xue, L.F.[Lian-Feng],
Rubber Tree Crown Segmentation and Property Retrieval Using
Ground-Based Mobile LiDAR after Natural Disturbances,
RS(11), No. 8, 2019, pp. xx-yy.
DOI Link
1905
BibRef
Huang, Z.X.[Zhi-Xian],
Huang, X.[Xiao],
Fan, J.C.[Jiang-Chuan],
Eichhorn, M.[Markus],
An, F.[Feng],
Chen, B.Q.[Bang-Qian],
Cao, L.[Lin],
Zhu, Z.L.[Zheng-Li],
Yun, T.[Ting],
Retrieval of Aerodynamic Parameters in Rubber Tree Forests Based on
the Computer Simulation Technique and Terrestrial Laser Scanning Data,
RS(12), No. 8, 2020, pp. xx-yy.
DOI Link
2004
BibRef
Chen, B.Q.[Bang-Qian],
Yun, T.[Tin],
Ma, J.[Jun],
Kou, W.[Weili],
Li, H.L.[Hai-Liang],
Yang, C.[Chuan],
Xiao, X.M.[Xiang-Ming],
Zhang, X.[Xian],
Sun, R.[Rui],
Xie, G.S.[Gui-Shui],
Wu, Z.X.[Zhi-Xiang],
High-Precision Stand Age Data Facilitate the Estimation of Rubber
Plantation Biomass: A Case Study of Hainan Island, China,
RS(12), No. 23, 2020, pp. xx-yy.
DOI Link
2012
BibRef
And:
Correction:
RS(14), No. 19, 2022, pp. xx-yy.
DOI Link
2210
BibRef
Azizan, F.A.[Fathin Ayuni],
Kiloes, A.M.[Adhitya Marendra],
Astuti, I.S.[Ike Sari],
Aziz, A.A.[Ammar Abdul],
Application of Optical Remote Sensing in Rubber Plantations: A
Systematic Review,
RS(13), No. 3, 2021, pp. xx-yy.
DOI Link
2102
BibRef
Yang, J.B.[Jian-Bo],
Xu, J.C.[Jian-Chu],
Zhai, D.L.[De-Li],
Integrating Phenological and Geographical Information with Artificial
Intelligence Algorithm to Map Rubber Plantations in Xishuangbanna,
RS(13), No. 14, 2021, pp. xx-yy.
DOI Link
2107
BibRef
Azizan, F.A.[Fathin Ayuni],
Astuti, I.S.[Ike Sari],
Aditya, M.I.[Mohammad Irvan],
Febbiyanti, T.R.[Tri Rapani],
Williams, A.[Alwyn],
Young, A.[Anthony],
Aziz, A.A.[Ammar Abdul],
Using Multi-Temporal Satellite Data to Analyse Phenological Responses
of Rubber (Hevea brasiliensis) to Climatic Variations in South
Sumatra, Indonesia,
RS(13), No. 15, 2021, pp. xx-yy.
DOI Link
2108
BibRef
Sari, I.L.[Inggit Lolita],
Weston, C.J.[Christopher J.],
Newnham, G.J.[Glenn J.],
Volkova, L.[Liubov],
Developing Multi-Source Indices to Discriminate between Native
Tropical Forests, Oil Palm and Rubber Plantations in Indonesia,
RS(14), No. 1, 2022, pp. xx-yy.
DOI Link
2201
BibRef
Cui, B.[Bei],
Huang, W.J.[Wen-Jiang],
Ye, H.C.[Hui-Chun],
Chen, Q.X.[Quan-Xi],
The Suitability of PlanetScope Imagery for Mapping Rubber Plantations,
RS(14), No. 5, 2022, pp. xx-yy.
DOI Link
2203
BibRef
Li, H.Z.[Hong-Zhong],
Zhao, L.L.[Long-Long],
Sun, L.[Luyi],
Li, X.L.[Xiao-Li],
Wang, J.[Jin],
Han, Y.[Yu],
Liang, S.Z.[Shou-Zhen],
Chen, J.S.[Jin-Song],
Capability of Phenology-Based Sentinel-2 Composites for Rubber
Plantation Mapping in a Large Area with Complex Vegetation Landscapes,
RS(14), No. 21, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Huang, C.[Chong],
Zhang, C.C.[Chen-Chen],
Li, H.[He],
Assessment of the Impact of Rubber Plantation Expansion on Regional
Carbon Storage Based on Time Series Remote Sensing and the InVEST
Model,
RS(14), No. 24, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Li, X.[Xin],
Wang, X.C.[Xin-Cheng],
Gao, Y.F.[Yuan-Feng],
Wu, J.H.[Jiu-Hao],
Cheng, R.X.[Ren-Xi],
Ren, D.H.[Dong-Hao],
Bao, Q.[Qing],
Yun, T.[Ting],
Wu, Z.X.[Zhi-Xiang],
Xie, G.S.[Gui-Shui],
Chen, B.Q.[Bang-Qian],
Comparison of Different Important Predictors and Models for
Estimating Large-Scale Biomass of Rubber Plantations in Hainan
Island, China,
RS(15), No. 13, 2023, pp. 3447.
DOI Link
2307
BibRef
Fang, J.H.[Jia-Hao],
Shi, Y.L.[Yong-Liang],
Cao, J.H.[Jian-Hua],
Sun, Y.[Yao],
Zhang, W.M.[Wei-Min],
Active Navigation System for a Rubber-Tapping Robot Based on Trunk
Detection,
RS(15), No. 15, 2023, pp. xx-yy.
DOI Link
2308
BibRef
Zhou, H.[Hang],
Zhang, G.[Gan],
Zhang, J.X.[Jun-Xiong],
Zhang, C.L.[Chun-Long],
Mapping of Rubber Forest Growth Models Based on Point Cloud Data,
RS(15), No. 21, 2023, pp. 5083.
DOI Link
2311
BibRef
Cheng, X.Z.[Xiang-Zhe],
Feng, Y.Y.[Yu-Yun],
Guo, A.T.[An-Ting],
Huang, W.J.[Wen-Jiang],
Cai, Z.Y.[Zhi-Ying],
Dong, Y.Y.[Ying-Ying],
Guo, J.[Jing],
Qian, B.X.[Bin-Xiang],
Hao, Z.Q.[Zhuo-Qing],
Chen, G.[Guiliang],
Liu, Y.X.[Yi-Xian],
Detection of Rubber Tree Powdery Mildew from Leaf Level Hyperspectral
Data Using Continuous Wavelet Transform and Machine Learning,
RS(16), No. 1, 2024, pp. xx-yy.
DOI Link
2401
BibRef
Cheng, X.Z.[Xiang-Zhe],
Huang, M.N.[Meng-Ning],
Guo, A.[Anting],
Huang, W.J.[Wen-Jiang],
Cai, Z.Y.[Zhi-Ying],
Dong, Y.Y.[Ying-Ying],
Guo, J.[Jing],
Hao, Z.Q.[Zhuo-Qing],
Huang, Y.[Yanru],
Ren, K.[Kehui],
Hu, B.[Bohai],
Chen, G.[Guiliang],
Su, H.P.[Hai-Peng],
Li, L.[Lanlan],
Liu, Y.X.[Yi-Xian],
Early Detection of Rubber Tree Powdery Mildew by Combining Spectral
and Physicochemical Parameter Features,
RS(16), No. 9, 2024, pp. 1634.
DOI Link
2405
BibRef
Zhu, Y.F.[Yun-Feng],
Lin, Y.X.[Yu-Xuan],
Chen, B.Q.[Bang-Qian],
Yun, T.[Ting],
Wang, X.J.[Xiang-Jun],
Synergizing a Deep Learning and Enhanced Graph-Partitioning Algorithm
for Accurate Individual Rubber Tree-Crown Segmentation from Unmanned
Aerial Vehicle Light-Detection and Ranging Data,
RS(16), No. 15, 2024, pp. 2807.
DOI Link
2408
BibRef
Chen, B.Q.[Bang-Qian],
Dong, J.[Jinwei],
Hien, T.T.T.[Tran Thi Thu],
Yun, T.[Tin],
Kou, W.[Weili],
Wu, Z.X.[Zhi-Xiang],
Yang, C.[Chuan],
Wang, G.Z.[Gui-Zhen],
Lai, H.Y.[Hong-Yan],
Liu, R.J.[Rui-Jin],
An, F.[Feng],
A full time series imagery and full cycle monitoring (FTSI-FCM)
algorithm for tracking rubber plantation dynamics in the Vietnam from
1986 to 2022,
PandRS(220), 2025, pp. 377-394.
Elsevier DOI
2502
Rubber plantations, Landsat/Sentinel-2, Phenological features,
Establishment year, Vietnam
BibRef
Chapter on Cartography, Aerial Images, Buildings, Roads, Terrain, Forests, Trees, ATR continues in
Palm Trees, Oil Palms, Trees as Crops .