Zahira, S.,
Abderrahmane, H.,
Mederbal, K.,
Frederic, D.,
Mapping Latent Heat Flux in the Western Forest Covered Regions of
Algeria Using Remote Sensing Data and a Spatialized Model,
RS(1), No. 4, December 2009, pp. 795-817.
DOI Link
1203
BibRef
Maltese, A.[Antonino],
Awada, H.[Hassan],
Capodici, F.[Fulvio],
Ciraolo, G.[Giuseppe],
Loggia, G.L.[Goffredo La],
Rallo, G.[Giovanni],
On the Use of the Eddy Covariance Latent Heat Flux and Sap Flow
Transpiration for the Validation of a Surface Energy Balance Model,
RS(10), No. 2, 2018, pp. xx-yy.
DOI Link
1804
BibRef
Sun, Y.[Yibo],
Jia, L.[Li],
Chen, Q.T.[Qi-Ting],
Zheng, C.L.[Chao-Lei],
Optimizing Window Length for Turbulent Heat Flux Calculations from
Airborne Eddy Covariance Measurements under Near Neutral to Unstable
Atmospheric Stability Conditions,
RS(10), No. 5, 2018, pp. xx-yy.
DOI Link
1806
BibRef
Kumar, S.[Sujay],
Holmes, T.[Thomas],
Mocko, D.M.[David M.],
Wang, S.G.[Shu-Gong],
Peters-Lidard, C.[Christa],
Attribution of Flux Partitioning Variations between Land Surface
Models over the Continental U.S.,
RS(10), No. 5, 2018, pp. xx-yy.
DOI Link
1806
Plant and soil loss.
BibRef
Dhungel, R.[Ramesh],
Allen, R.G.[Richard G.],
Trezza, R.[Ricardo],
Robison, C.W.[Clarence W.],
Comparison of Latent Heat Flux Using Aerodynamic Methods and Using
the Penman-Monteith Method with Satellite-Based Surface Energy
Balance,
RS(6), No. 9, 2014, pp. 8844-8877.
DOI Link
1410
BibRef
Feng, F.[Fei],
Chen, J.Q.[Ji-Quan],
Li, X.L.[Xiang-Lan],
Yao, Y.J.[Yun-Jun],
Liang, S.L.[Shun-Lin],
Liu, M.[Meng],
Zhang, N.N.[Nan-Nan],
Guo, Y.[Yang],
Yu, J.[Jian],
Sun, M.[Minmin],
Validity of Five Satellite-Based Latent Heat Flux Algorithms for
Semi-arid Ecosystems,
RS(7), No. 12, 2015, pp. 15853.
DOI Link
1601
BibRef
Yang, Y.M.[Yong-Min],
Qiu, J.X.[Jian-Xiu],
Su, H.B.[Hong-Bo],
Bai, Q.M.[Qing-Mei],
Liu, S.[Suhua],
Li, L.[Lu],
Yu, Y.L.[Yi-Lei],
Huang, Y.X.[Yao-Xian],
A One-Source Approach for Estimating Land Surface Heat Fluxes Using
Remotely Sensed Land Surface Temperature,
RS(9), No. 1, 2017, pp. xx-yy.
DOI Link
1702
BibRef
Eswar, R.[Rajasekaran],
Sekhar, M.[Muddu],
Bhattacharya, B.K.[Bimal K.],
Bandyopadhyay, S.[Soumya],
Spatial Disaggregation of Latent Heat Flux Using Contextual Models
over India,
RS(9), No. 9, 2017, pp. xx-yy.
DOI Link
1711
BibRef
Liu, K.[Kai],
Su, H.B.[Hong-Bo],
Li, X.[Xueke],
Comparative Assessment of Two Vegetation Fractional Cover Estimating
Methods and Their Impacts on Modeling Urban Latent Heat Flux Using
Landsat Imagery,
RS(9), No. 5, 2017, pp. xx-yy.
DOI Link
1706
BibRef
Chen, S.S.[Shan-Shan],
Hu, D.[Deyong],
Parameterizing Anthropogenic Heat Flux with an Energy-Consumption
Inventory and Multi-Source Remote Sensing Data,
RS(9), No. 11, 2017, pp. xx-yy.
DOI Link
1712
BibRef
He, X.L.[Xin-Lei],
Xu, T.R.[Tong-Ren],
Bateni, S.M.[Sayed M.],
Neale, C.M.U.[Christopher M. U.],
Auligne, T.[Thomas],
Liu, S.M.[Shao-Min],
Wang, K.C.[Kai-Cun],
Mao, K.B.[Ke-Biao],
Yao, Y.J.[Yun-Jun],
Evaluation of the Weak Constraint Data Assimilation Approach for
Estimating Turbulent Heat Fluxes at Six Sites,
RS(10), No. 12, 2018, pp. xx-yy.
DOI Link
1901
BibRef
Wang, S.S.[Sha-Sha],
Hu, D.Y.[De-Yong],
Chen, S.S.[Shan-Shan],
Yu, C.[Chen],
A Partition Modeling for Anthropogenic Heat Flux Mapping in China,
RS(11), No. 9, 2019, pp. xx-yy.
DOI Link
1905
BibRef
Wang, Y.[Yipu],
Li, R.[Rui],
Min, Q.L.[Qi-Long],
Zhang, L.[Leiming],
Yu, G.R.[Gui-Rui],
Bergeron, Y.[Yves],
Estimation of Vegetation Latent Heat Flux over Three Forest Sites in
ChinaFLUX using Satellite Microwave Vegetation Water Content Index,
RS(11), No. 11, 2019, pp. xx-yy.
DOI Link
1906
BibRef
Krayenhoff, E.S.[E. Scott],
Wu, Z.F.[Zhi-Feng],
Shi, Q.[Qian],
Ouyang, X.Y.[Xiao-Ying],
Parameterization of Urban Sensible Heat Flux from Remotely Sensed
Surface Temperature: Effects of Surface Structure,
RS(11), No. 11, 2019, pp. xx-yy.
DOI Link
1906
BibRef
Crespo, J.A.[Juan A.],
Posselt, D.J.[Derek J.],
Asharaf, S.[Shakeel],
CYGNSS Surface Heat Flux Product Development,
RS(11), No. 19, 2019, pp. xx-yy.
DOI Link
1910
BibRef
Ge, N.[Nan],
Zhong, L.[Lei],
Ma, Y.M.[Yao-Ming],
Cheng, M.L.[Mei-Lin],
Wang, X.[Xian],
Zou, M.J.[Mi-Jun],
Huang, Z.Y.[Zi-Yu],
Estimation of Land Surface Heat Fluxes Based on Landsat 7 ETM+ Data
and Field Measurements over the Northern Tibetan Plateau,
RS(11), No. 24, 2019, pp. xx-yy.
DOI Link
1912
BibRef
Li, X.J.[Xiao-Jun],
Xin, X.Z.[Xiao-Zhou],
Jiao, J.J.[Jing-Jun],
Peng, Z.Q.[Zhi-Qing],
Zhang, H.L.[Hai-Long],
Shao, S.S.[Shan-Shan],
Liu, Q.H.[Qin-Huo],
Estimating Subpixel Surface Heat Fluxes through Applying
Temperature-Sharpening Methods to MODIS Data,
RS(9), No. 8, 2017, pp. xx-yy.
DOI Link
1708
BibRef
Wang, X.Y.[Xuan-Yu],
Yao, Y.J.[Yun-Jun],
Zhao, S.H.[Shao-Hua],
Jia, K.[Kun],
Zhang, X.T.[Xiao-Tong],
Zhang, Y.[Yuhu],
Zhang, L.[Lilin],
Xu, J.[Jia],
Chen, X.W.[Xiao-Wei],
MODIS-Based Estimation of Terrestrial Latent Heat Flux over North
America Using Three Machine Learning Algorithms,
RS(9), No. 12, 2017, pp. xx-yy.
DOI Link
1802
BibRef
Yang, C.[Cheng],
Wu, T.H.[Tong-Hua],
Wang, J.M.[Jie-Min],
Yao, J.[Jimin],
Li, R.[Ren],
Zhao, L.[Lin],
Xie, C.W.[Chang-Wei],
Zhu, X.F.[Xiao-Fan],
Ni, J.[Jie],
Hao, J.M.[Jun-Ming],
Estimating Surface Soil Heat Flux in Permafrost Regions Using Remote
Sensing-Based Models on the Northern Qinghai-Tibetan Plateau under
Clear-Sky Conditions,
RS(11), No. 4, 2019, pp. xx-yy.
DOI Link
1903
BibRef
Nkwinkwa Njouodo, A.S.I.[Arielle Stela Imbol],
Rouault, M.[Mathieu],
Johannessen, J.A.[Johnny A.],
Latent Heat Flux in the Agulhas Current,
RS(11), No. 13, 2019, pp. xx-yy.
DOI Link
1907
BibRef
Shang, K.[Ke],
Yao, Y.J.[Yun-Jun],
Li, Y.[Yufu],
Yang, J.M.[Jun-Ming],
Jia, K.[Kun],
Zhang, X.T.[Xiao-Tong],
Chen, X.W.[Xiao-Wei],
Bei, X.Y.[Xiang-Yi],
Guo, X.Z.[Xiao-Zheng],
Fusion of Five Satellite-Derived Products Using Extremely Randomized
Trees to Estimate Terrestrial Latent Heat Flux over Europe,
RS(12), No. 4, 2020, pp. xx-yy.
DOI Link
2003
BibRef
Hossain, K.[Kabir],
Villebro, F.[Frederik],
Forchhammer, S.[Søren],
UAV image analysis for leakage detection in district heating systems
using machine learning,
PRL(140), 2020, pp. 158-164.
Elsevier DOI
2012
CNN, SVM, RF, Adaboost, Energy leakage detection, District heating systems
BibRef
Acharya, B.[Bibek],
Sharma, V.[Vivek],
Heitholt, J.[James],
Tekiela, D.[Daniel],
Nippgen, F.[Fabian],
Quantification and Mapping of Satellite Driven Surface Energy Balance
Fluxes in Semi-Arid to Arid Inter-Mountain Region,
RS(12), No. 24, 2020, pp. xx-yy.
DOI Link
2012
BibRef
Acharya, B.[Bibek],
Sharma, V.[Vivek],
Comparison of Satellite Driven Surface Energy Balance Models in
Estimating Crop Evapotranspiration in Semi-Arid to Arid
Inter-Mountain Region,
RS(13), No. 9, 2021, pp. xx-yy.
DOI Link
2105
BibRef
Cristóbal, J.[Jordi],
Prakash, A.[Anupma],
Anderson, M.C.[Martha C.],
Kustas, W.P.[William P.],
Alfieri, J.G.[Joseph G.],
Gens, R.[Rudiger],
Surface Energy Flux Estimation in Two Boreal Settings in Alaska Using
a Thermal-Based Remote Sensing Model,
RS(12), No. 24, 2020, pp. xx-yy.
DOI Link
2012
BibRef
Kim, J.[Jaemin],
Lee, Y.G.[Yun Gon],
Characteristics of Satellite-Based Ocean Turbulent Heat Flux around
the Korean Peninsula and Relationship with Changes in Typhoon
Intensity,
RS(13), No. 1, 2021, pp. xx-yy.
DOI Link
2101
BibRef
Wang, L.[Lu],
Zhang, Y.[Yuhu],
Yao, Y.J.[Yun-Jun],
Xiao, Z.Q.[Zhi-Qiang],
Shang, K.[Ke],
Guo, X.Z.[Xiao-Zheng],
Yang, J.M.[Jun-Ming],
Xue, S.H.[Shu-Hui],
Wang, J.[Jie],
GBRT-Based Estimation of Terrestrial Latent Heat Flux in the Haihe
River Basin from Satellite and Reanalysis Datasets,
RS(13), No. 6, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Simpson, J.E.[Jake E.],
Holman, F.[Fenner],
Nieto, H.[Hector],
Voelksch, I.[Ingo],
Mauder, M.[Matthias],
Klatt, J.[Janina],
Fiener, P.[Peter],
Kaplan, J.O.[Jed O.],
High Spatial and Temporal Resolution Energy Flux Mapping of Different
Land Covers Using an Off-the-Shelf Unmanned Aerial System,
RS(13), No. 7, 2021, pp. xx-yy.
DOI Link
2104
BibRef
de Andrade, B.C.C.[Bruno César Comini],
Pedrollo, O.C.[Olavo Correa],
Ruhoff, A.[Anderson],
Moreira, A.A.[Adriana Aparecida],
Laipelt, L.[Leonardo],
Kayser, R.B.[Rafael Bloedow],
Biudes, M.S.[Marcelo Sacardi],
Costa dos Santos, C.A.[Carlos Antonio],
Roberti, D.R.[Debora Regina],
Machado, N.G.[Nadja Gomes],
Dalmagro, H.J.[Higo Jose],
Antonino, A.C.D.[Antonio Celso Dantas],
de Sousa Lima, J.R.[José Romualdo],
de Souza, E.S.[Eduardo Soares],
Souza, R.[Rodolfo],
Artificial Neural Network Model of Soil Heat Flux over Multiple Land
Covers in South America,
RS(13), No. 12, 2021, pp. xx-yy.
DOI Link
2106
BibRef
Zhang, L.L.[Li-Lin],
Yao, Y.J.[Yun-Jun],
Bei, X.Y.[Xiang-Yi],
Li, Y.[Yufu],
Shang, K.[Ke],
Yang, J.M.[Jun-Ming],
Guo, X.Z.[Xiao-Zheng],
Yu, R.Y.[Rui-Yang],
Xie, Z.J.[Zi-Jing],
ERTFM: An Effective Model to Fuse Chinese GF-1 and MODIS Reflectance
Data for Terrestrial Latent Heat Flux Estimation,
RS(13), No. 18, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Akkermans, T.[Tom],
Clerbaux, N.[Nicolas],
Retrieval of Daily Mean Top-of-Atmosphere Reflected Solar Flux Using
the Advanced Very High Resolution Radiometer (AVHRR) Instruments,
RS(13), No. 18, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Taylor, H.[Heather],
Vreugdenburg, M.[Melissa],
Sangalli, L.,
Vincent, R.[Ron],
RMCSat: An F10.7 Solar Flux Index CubeSat Mission,
RS(13), No. 23, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Khan, M.S.[Muhammad Sarfraz],
Jeon, S.B.[Seung Bae],
Jeong, M.H.[Myeong-Hun],
Gap-Filling Eddy Covariance Latent Heat Flux: Inter-Comparison of
Four Machine Learning Model Predictions and Uncertainties in Forest
Ecosystem,
RS(13), No. 24, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Peng, Z.[Zhong],
Tang, R.L.[Rong-Lin],
Jiang, Y.Z.[Ya-Zhen],
Liu, M.[Meng],
Li, Z.L.[Zhao-Liang],
Global estimates of 500m daily aerodynamic roughness length from
MODIS data,
PandRS(183), 2022, pp. 336-351.
Elsevier DOI
2201
Land surface turbulent heat fluxes .
Aerodynamic roughness length, Machine learning, MODIS, Evapotranspiration
BibRef
Bonsoms, J.[Josep],
Boulet, G.[Gilles],
Ensemble Machine Learning Outperforms Empirical Equations for the
Ground Heat Flux Estimation with Remote Sensing Data,
RS(14), No. 8, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Chickadel, C.C.[C. Chris],
Branch, R.[Ruth],
Asher, W.E.[William E.],
Jessup, A.T.[Andrew T.],
Laboratory Heat Flux Estimates of Seawater Foam for Low Wind Speeds,
RS(14), No. 8, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Zhang, B.[Biao],
Yu, X.T.[Xiao-Tong],
Perrie, W.[William],
Zhou, F.[Fenghua],
Air-Sea Interface Parameters and Heat Flux from Neural Network
and Advanced Microwave Scanning Radiometer Observations,
RS(14), No. 10, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Yao, Y.J.[Yun-Jun],
Zhang, X.T.[Xiao-Tong],
Levy, G.[Gad],
Jia, K.[Kun],
Al-Quraishi, A.M.F.[Ayad M. Fadhil],
Advances in Land-Ocean Heat Fluxes Using Remote Sensing,
RS(14), No. 14, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Li, H.Y.[Hong-Yi],
Zhou, L.[Libo],
Wang, G.[Ge],
The Observed Impact of the South Asian Summer Monsoon on
Land-Atmosphere Heat Transfers and Its Inhomogeneity over the Tibetan
Plateau,
RS(14), No. 13, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Tian, Y.Z.[Ying-Ze],
Xu, T.R.[Tong-Ren],
Chen, F.[Fei],
He, X.L.[Xin-Lei],
Li, S.[Shi],
Can Data Assimilation Improve Short-Term Prediction of Land Surface
Variables?,
RS(14), No. 20, 2022, pp. xx-yy.
DOI Link
2211
BibRef
Kim, M.S.[Min-Seong],
Kwon, B.H.[Byung Hyuk],
Goo, T.Y.[Tae-Young],
Jung, S.P.[Sueng-Pil],
Dropsonde-Based Heat Fluxes and Mixed Layer Height over the Sea
Surface near the Korean Peninsula,
RS(15), No. 1, 2023, pp. xx-yy.
DOI Link
2301
BibRef
Wang, S.Z.[Shu-Zhou],
Ma, Y.M.[Yao-Ming],
Liu, Y.X.[Yu-Xin],
Simulated Trends in Land Surface Sensible Heat Flux on the Tibetan
Plateau in Recent Decades,
RS(15), No. 3, 2023, pp. xx-yy.
DOI Link
2302
BibRef
Njuki, S.M.[Sammy M.],
Mannaerts, C.M.[Chris M.],
Su, Z.[Zhongbo],
Accounting for Turbulence-Induced Canopy Heat Transfer in the
Simulation of Sensible Heat Flux in SEBS Model,
RS(15), No. 6, 2023, pp. 1578.
DOI Link
2304
BibRef
Lin, J.[Jing],
Xu, T.R.[Tong-Ren],
Zhang, G.Q.[Gang-Qiang],
He, X.P.[Xiang-Ping],
Liu, S.M.[Shao-Min],
Xu, Z.W.[Zi-Wei],
Zhao, L.F.[Li-Fang],
Xu, Z.[Zongbin],
Wang, J.C.[Jian-Cheng],
Upscaling of Latent Heat Flux in Heihe River Basin Based on Transfer
Learning Model,
RS(15), No. 7, 2023, pp. 1901.
DOI Link
2304
BibRef
Lin, J.S.[Jin-Song],
Wang, Y.F.[Yan-Feng],
Pan, H.D.[Hai-Dong],
Wei, Z.[Zexun],
Xu, T.F.[Teng-Fei],
Uncertainty of CYGNSS-Derived Heat Flux Variations at Diurnal to
Seasonal Time Scales over the Tropical Oceans,
RS(15), No. 12, 2023, pp. xx-yy.
DOI Link
2307
BibRef
Benkovitz, A.[Ayelet],
Zafrir, H.[Hovav],
Reuveni, Y.[Yuval],
A Novel Assessment of the Surface Heat Flux Role in Radon (Rn-222)
Gas Flow within Subsurface Geological Porous Media,
RS(15), No. 16, 2023, pp. 4094.
DOI Link
2309
BibRef
Chen, L.J.[Li-Juan],
Chen, H.[Haishan],
Du, X.[Xinguan],
Wang, R.[Ren],
Retrieval of Surface Energy Fluxes Considering Vegetation Changes and
Aerosol Effects,
RS(16), No. 4, 2024, pp. 668.
DOI Link
2402
BibRef
Marotta, E.[Enrica],
Peluso, R.[Rosario],
Avino, R.[Rosario],
Avvisati, G.[Gala],
Sessa, E.B.[Eliana Bellucci],
Belviso, P.[Pasquale],
Caputo, T.[Teresa],
Carandente, A.[Antonio],
Cirillo, F.[Francesca],
Pescione, R.A.[Romano Antonio],
Clusterisation and Temporal Trends of Heat Flux by UAS Thermal Camera,
RS(16), No. 6, 2024, pp. 1102.
DOI Link
2403
BibRef
Liu, C.[Changyu],
Deng, S.[Shumei],
Yang, K.X.[Kai-Xuan],
Ma, X.B.[Xue-Bin],
Zhang, K.[Kun],
Li, X.B.[Xue-Bin],
Luo, T.[Tao],
The Unmanned Aerial Vehicle-Based Estimation of Turbulent Heat Fluxes
in the Sub-Surface of Urban Forests Using an Improved Semi-Empirical
Triangle Method,
RS(16), No. 15, 2024, pp. 2830.
DOI Link
2408
BibRef
Chapter on Remote Sensing General Issue, Land Use, Land Cover continues in
Upward Longwave Radiation, Outgoing Longwave Radiation, Upwelling Radiation .