10.1.10.4 Matching for Stereo, Neural Network Applications, CNN

Chapter Contents (Back)
Stereo, Matching. Neural Networks.

Marshall, J.A., Kalarickal, G.J., Graves, E.B.,
Neural Model of Visual Stereomatching: Slant, Transparency and Clouds,
NetCompNeur(7), No. 4, November 1996, pp. 635-669. 9701
BibRef

Lee, J.J.[Jun Jae], Shim, J.C.[Jae Chang], Ha, Y.H.[Yeong Ho],
Stereo Correspondence Using the Hopfield Neural-Network of a New Energy Function,
PR(27), No. 11, November 1994, pp. 1513-1522.
Elsevier DOI BibRef 9411

de la Cruz, J.M., Pajares, G., Aranda, J.,
A Neural-Network Model in Stereovision Matching,
NeurNet(8), No. 5, 1995, pp. 805-813. BibRef 9500

Pajares, G., de la Cruz, J.M., Aranda, J.,
Stereo Matching Based on the Self-Organizing Feature-Mapping Algorithm,
PRL(19), No. 3-4, March 1998, pp. 319-330. 9807
BibRef

Pajares, G.[Gonzalo], de la Cruz, J.M.[Jesús M.], Aranda, J.[Joaquin],
Relaxation by Hopfield Network in Stereo Image Matching,
PR(31), No. 5, May 1998, pp. 561-574.
Elsevier DOI 9805
BibRef

Pajares, G.[Gonzalo], de la Cruz, J.M.[Jesús Manuel], López-Orozco, J.A.[José Antonio],
Relaxation labeling in stereo image matching,
PR(33), No. 1, January 2000, pp. 53-68.
Elsevier DOI 0005

See also Fuzzy Cognitive Maps for stereovision matching. BibRef

Pajares, G.[Gonzalo], López-Orozco, J.A.[José Antonio], de la Cruz, J.M.[Jesús Manuel],
Improving Stereovision Matching through Supervised Learning,
PAA(1), No. 2, 1998, pp. 105-120. BibRef 9800

Pajares, G.[Gonzalo], de la Cruz, J.M.[Jesús Manuel],
Stereovision matching through support vector machines,
PRL(24), No. 15, November 2003, pp. 2575-2583.
Elsevier DOI 0308
Local matching. BibRef

Pajares, G.[Gonzalo], de la Cruz, J.M.[Jesús Manuel],
On Combining Support Vector Machines and Simulated Annealing in Stereovision Matching,
SMC-B(34), No. 4, August 2004, pp. 1646-1657.
IEEE Abstract. 0409
BibRef

Pajares, G.[Gonzalo], de la Cruz, J.M.[Jesus M.],
Pattern Recognition Learning Applied to Stereovision Matching,
ICPR98(PRP1). 9808
Not online. BibRef

Pajares, G.[Gonzalo], de la Cruz, J.M.[Jesús M.],
Fuzzy Cognitive Maps for stereovision matching,
PR(39), No. 11, November 2006, pp. 2101-2114.
Elsevier DOI 0608
Fuzzy Cognitive Maps; Fuzzy Clustering; Relaxation; Fuzzy; Stereovision; Matching; Similarity; Smoothness; Ordering; Epipolar; Uniqueness
See also Relaxation labeling in stereo image matching. BibRef

Herrera, P.J.[P. Javier], Pajares, G.[Gonzalo], Guijarro, M.[María], Ruz, J.J.[J. Jaime], de la Cruz, J.M.[Jesús M.],
Combination of Attributes in Stereovision Matching for Fish-Eye Lenses in Forest Analysis,
ACIVS09(277-287).
Springer DOI 0909
BibRef

Pajares, G.[Gonzalo], de la Cruz, J.M.[Jesús M.],
Local stereovision matching through the ADALINE neural network,
PRL(22), No. 14, December 2001, pp. 1457-1473.
Elsevier DOI 0110
BibRef

Wang, Z.[Zhi], Zhu, S.Q.[Shi-Qiang], Li, Y.H.[Yue-Hua], Cui, Z.Z.[Zheng-Zhe],
Convolutional neural network based deep conditional random fields for stereo matching,
JVCIR(40, Part B), No. 1, 2016, pp. 739-750.
Elsevier DOI 1610
Stereo matching BibRef

Brandao, P.[Patrick], Mazomenos, E.[Evangelos], Stoyanov, D.[Danail],
Widening siamese architectures for stereo matching,
PRL(120), 2019, pp. 75-81.
Elsevier DOI 1904
Stereo matching, Convolutional neural network, Disparity BibRef

Nguyen, T.P.[Tien Phuoc], Jeon, J.W.[Jae Wook],
Wide context learning network for stereo matching,
SP:IC(78), 2019, pp. 263-273.
Elsevier DOI 1909
Stereo matching, 3D reconstruction, Matching cost, Cost aggregation, Convolutional neural network BibRef

Lei, J.F.[Jun-Feng], Dong, Y.X.[Yu-Xuan], Zhao, T.[Tao], xiao, J.S.[Jin-Sheng], Chen, Y.H.[Yun-Hua], Li, B.J.[Bi-Jun],
Novel shrinking residual convolutional neural network for efficient accurate stereo matching,
JVCIR(72), 2020, pp. 102872.
Elsevier DOI 2010
Stereo matching, Matching cost, Residual convolutional neural network BibRef

Wang, C.[Chen], Bai, X.[Xiao], Wang, X.[Xiang], Liu, X.L.[Xiang-Long], Zhou, J.[Jun], Wu, X.Y.[Xin-Yu], Li, H.D.[Hong-Dong], Tao, D.C.[Da-Cheng],
Self-Supervised Multiscale Adversarial Regression Network for Stereo Disparity Estimation,
Cyber(51), No. 10, October 2021, pp. 4770-4783.
IEEE DOI 2110
Estimation, Feature extraction, Training, Sensors, Generative adversarial networks, Generators, Annotations, stereo disparity estimation BibRef

Liang, Z.F.[Zheng-Fa], Guo, Y.L.[Yu-Lan], Feng, Y.L.[Yi-Liu], Chen, W.[Wei], Qiao, L.B.[Lin-Bo], Zhou, L.[Li], Zhang, J.F.[Jian-Feng], Liu, H.Z.[Heng-Zhu],
Stereo Matching Using Multi-Level Cost Volume and Multi-Scale Feature Constancy,
PAMI(43), No. 1, January 2021, pp. 300-315.
IEEE DOI 2012
Estimation, Feature extraction, Image reconstruction, Convolution, Task analysis, Convolutional neural networks, Training, feature constancy BibRef

Zhang, Y.[Yaru], Li, Y.Q.[Ya-Qian], Wu, C.[Chao], Liu, B.[Bin],
Attention-guided aggregation stereo matching network,
IVC(106), 2021, pp. 104088.
Elsevier DOI 2102
Convolutional neural network, Stereo matching, Attention mechanism, Guided cost volume BibRef

Sang, H.W.[Hai-Wei], Yang, Z.L.[Zu-Liu], Yang, X.W.[Xiao-Wei], Zhao, Y.[Yong],
MPA-Net: multi-path attention stereo matching network,
IET-IPR(14), No. 17, 24 December 2020, pp. 4554-4562.
DOI Link 2104
BibRef

Cheng, X.J.[Xian-Jing], Zhao, Y.[Yong], Yang, W.B.[Wen-Bang], Hu, Z.J.[Zhi-Jun], Yu, X.M.[Xiao-Min], Sang, H.W.[Hai-Wei], Zhang, G.Y.[Gui-Ying],
LESC: Superpixel cut-based local expansion for accurate stereo matching,
IET-IPR(16), No. 2, 2022, pp. 470-484.
DOI Link 2201
BibRef

Shao, X.T.[Xiao-Tao], Zhang, W.[Wen], Guo, M.K.[Ming-Kun], Guo, S.Q.[Si-Qi], Qian, M.Y.[Man-Yi],
CSNet: Cascade stereo matching network using multi-information cost volume,
IET-ITS(15), No. 5, 2021, pp. 635-645.
DOI Link 2106
BibRef

Cheng, C.[Chunbo], Li, H.[Hong], Zhang, L.M.[Li-Ming],
Two-Branch Deconvolutional Network With Application in Stereo Matching,
IP(31), 2022, pp. 327-340.
IEEE DOI 2112
Image reconstruction, Feature extraction, Costs, Estimation, Convolutional neural networks, Convolution, disparity estimation network BibRef

Zhang, H.Y.[Hao-Yuan], Chau, L.P.[Lap-Pui], Wang, D.[Danwei],
Soft Warping Based Unsupervised Domain Adaptation for Stereo Matching,
MultMed(24), 2022, pp. 3835-3846.
IEEE DOI 2208
Training, Task analysis, Pipelines, Neural networks, Adversarial machine learning, Feature extraction, soft warping loss BibRef

Zeng, K.[Kai], Wang, Y.N.[Yao-Nan], Zhu, Q.[Qing], Mao, J.X.[Jian-Xu], Zhang, H.[Hui],
Deep Progressive Fusion Stereo Network,
ITS(23), No. 12, December 2022, pp. 25437-25447.
IEEE DOI 2212
Costs, Feature extraction, Autonomous vehicles, Semantics, Task analysis, Estimation, Redundancy, Stereo matching, unary feature maps BibRef

Zeng, K.[Kai], Wang, Y.N.[Yao-Nan], Wang, W.[Wei], Zhang, H.[Hui], Mao, J.X.[Jian-Xu], Zhu, Q.[Qing],
Deep Confidence Propagation Stereo Network,
ITS(24), No. 8, August 2023, pp. 8097-8108.
IEEE DOI 2308
Costs, Feature extraction, Estimation, Correlation, Computer architecture, Measurement, Volume measurement, unary feature maps BibRef

Wang, L.G.[Long-Guang], Guo, Y.L.[Yu-Lan], Wang, Y.Q.[Ying-Qian], Liang, Z.F.[Zheng-Fa], Lin, Z.P.[Zai-Ping], Yang, J.G.[Jun-Gang], An, W.[Wei],
Parallax Attention for Unsupervised Stereo Correspondence Learning,
PAMI(44), No. 4, April 2022, pp. 2108-2125.
IEEE DOI 2203
Task analysis, Cameras, Correlation, Aggregates, Parallax attention, stereo matching, image super-resolution, unsupervised learning, stereo correspondence BibRef

Chen, S.L.[Sheng-Lun], Zhang, H.[Hong], Sun, B.[Baoli], Li, H.J.[Hao-Jie], Ye, X.C.[Xin-Chen], Wang, Z.H.[Zhi-Hui],
Feature enhancement network for stereo matching,
IVC(130), 2023, pp. 104614.
Elsevier DOI 2301
Stereo matching, Deep learning, Pyramid feature representation, Cross-modal fusion, Disparity weight loss BibRef

Han, Q.H.[Qi-Hui], Jung, C.[Cheolkon],
Cross Spectral Disparity Estimation From VIS and NIR Paired Images Using Disentangled Representation and Reversible Neural Networks,
ITS(24), No. 5, May 2023, pp. 5326-5336.
IEEE DOI 2305
Feature extraction, Estimation, Semantic segmentation, Neural networks, Semantics, Couplings, Task analysis, Cross spectral, stereo matching BibRef

Wu, Z.[Zhong], Zhu, H.[Hong], He, L.[Lili], Wang, D.[Dong], Shi, J.[Jing], Wu, W.H.[Wen-Huan],
Asymmetric cost aggregation network for efficient stereo matching,
IET-IPR(17), No. 8, 2023, pp. 2450-2466.
DOI Link 2306
convolutional neural nets, image matching, stereo image processing BibRef

Emlek, A.[Alper], Peker, M.[Murat],
P3SNet: Parallel Pyramid Pooling Stereo Network,
ITS(24), No. 10, October 2023, pp. 10433-10444.
IEEE DOI 2310
BibRef

Wang, X.F.[Xiao-Feng], Yu, J.[Jun], Sun, Z.H.[Zhi-Heng], Sun, J.[Jiameng], Su, Y.Y.[Ying-Ying],
Multi-scale graph neural network for global stereo matching,
SP:IC(118), 2023, pp. 117026.
Elsevier DOI 2310
MGNN, Stereo matching, Global context information, Multi-scale position embedding BibRef

Wang, Q.Y.[Qing-Yu], Xing, H.[Hao], Ying, Y.[Yibin], Zhou, M.C.[Ming-Chuan],
CGFNet: 3D Convolution Guided and Multi-scale Volume Fusion Network for fast and robust stereo matching,
PRL(173), 2023, pp. 38-44.
Elsevier DOI 2310
Robotic vision, Stereo matching, Disparity estimation, Deep learning, Textureless regions BibRef

Luo, Y.X.[Yi-Xin], Wang, H.[Hao], Lv, X.L.[Xiao-Lei],
End-to-End Edge-Guided Multi-Scale Matching Network for Optical Satellite Stereo Image Pairs,
RS(16), No. 5, 2024, pp. 882.
DOI Link 2403
BibRef

Qi, Z.K.[Zheng-Kai], Zhang, J.[Junkang], Fang, F.[Faming], Wang, T.T.[Ting-Ting], Zhang, G.X.[Gui-Xu],
UGNet: Uncertainty aware geometry enhanced networks for stereo matching,
PR(151), 2024, pp. 110410.
Elsevier DOI 2404
Stereo matching, Disparity regression, Uncertainty guidance, Geometry-enhanced BibRef

Yang, H.T.[Hui-Tong], Lei, L.[Liang], Sang, H.W.[Hai-Wei],
GAMNet: Global attention via multi-scale context for depth estimation algorithm and application,
IET-IPR(18), No. 1, 2024, pp. 247-264.
DOI Link 2401
convolutional neural nets, image processing BibRef

Zeng, K.[Kai], Zhang, H.[Hui], Wang, W.[Wei], Wang, Y.N.[Yao-Nan], Mao, J.X.[Jian-Xu],
Deep Stereo Network With MRF-Based Cost Aggregation,
CirSysVideo(34), No. 4, April 2024, pp. 2426-2438.
IEEE DOI 2404
Costs, Feature extraction, Estimation, Data models, Pipelines, Network architecture, Stereo matching, cost aggregation BibRef

Quan, Z.H.[Zhen-Hua], Luo, L.[Liang], Wu, B.[Bin],
A multidimensional fusion image stereo matching algorithm,
IET-IPR(18), No. 7, 2024, pp. 1903-1914.
DOI Link 2405
image matching, neural nets BibRef

Yuan, T.M.[Tu-Ming], Hu, J.C.[Jian-Cheng], Ou, S.J.[Shuang-Jiang], Yang, W.J.[Wei-Jia], Hei, Y.F.[Ya-Fang],
Hourglass cascaded recurrent stereo matching network,
IVC(147), 2024, pp. 105074.
Elsevier DOI Code:
WWW Link. 2406
Stereo matching, Stacked hourglass network, Recurrent neural network, Attention mechanism BibRef

Zhang, C.H.[Cheng-Hao], Meng, G.F.[Gao-Feng], Tian, K.[Kun], Ni, B.[Bolin], Xiang, S.M.[Shi-Ming],
Active Disparity Sampling for Stereo Matching With Adjoint Network,
IP(33), 2024, pp. 354-365.
IEEE DOI 2401
BibRef


Chen, Z.Y.[Zi-Yang], Long, W.[Wei], Yao, H.[He], Zhang, Y.J.[Yong-Jun], Wang, B.S.[Bing-Shu], Qin, Y.B.[Yong-Bin], Wu, J.[Jia],
MoCha-Stereo: Motif Channel Attention Network for Stereo Matching,
CVPR24(27768-27777)
IEEE DOI 2410
Costs, Correlation, Accuracy, Estimation, Pattern matching, Stereo Matching, Motif Mining, frequency domain information BibRef

Guan, T.[Tongfan], Wang, C.[Chen], Liu, Y.H.[Yun-Hui],
Neural Markov Random Field for Stereo Matching,
CVPR24(5459-5469)
IEEE DOI Code:
WWW Link. 2410
Accuracy, Computational modeling, Message passing, Neural networks, Probability, Transformer, Stereo Matching BibRef

Sharma, M.[Mansi], Choudhary, R.[Rohit], Anil, R.[Rithvik],
2T-UNET: A Two-Tower UNet with Depth Clues for Robust Stereo Depth Estimation,
L3D24(757-764)
IEEE DOI 2410
Geometry, Solid modeling, Costs, Poles and towers, Estimation, Computer architecture, Computational photography, deep learning, stereo matching BibRef

Lv, W.J.[Wei-Jin], Jin, X.[Xin], Jiang, G.[Guotai],
A 3D Label Stereo Matching Method Using Underwater Energy Function,
ICIP23(2445-2449)
IEEE DOI Code:
WWW Link. 2312
BibRef

Fang, I.S.[I-Sheng], Wen, H.C.[Hsiao-Chieh], Hsu, C.L.[Chia-Lun], Jen, P.C.[Po-Chung], Chen, P.Y.[Ping-Yang], Chen, Y.S.[Yong-Sheng],
ES3Net: Accurate and Efficient Edge-based Self-Supervised Stereo Matching Network,
EVW23(4472-4481)
IEEE DOI 2309
BibRef

Chebbi, M.A.[Mohamed Ali], Rupnik, E.[Ewelina], Pierrot-Deseilligny, M.[Marc], Lopes, P.[Paul],
DeepSim-Nets: Deep Similarity Networks for Stereo Image Matching,
EarthVision23(2097-2105)
IEEE DOI 2309
BibRef

Zhao, H.L.[Hao-Liang], Zhou, H.[Huizhou], Zhang, Y.J.[Yong-Jun], Chen, J.[Jie], Yang, Y.T.[Yi-Tong], Zhao, Y.[Yong],
High-Frequency Stereo Matching Network,
CVPR23(1327-1336)
IEEE DOI 2309
BibRef

Zhao, H.L.[Hao-Liang], Zhou, H.[Huizhou], Zhang, Y.J.[Yong-Jun], Zhao, Y.[Yong], Yang, Y.T.[Yi-Tong], Ouyang, T.[Ting],
EAI-stereo: Error Aware Iterative Network for Stereo Matching,
ACCV22(I:3-19).
Springer DOI 2307
BibRef

Su, Q.[Qing], Ji, S.H.[Shi-Hao],
ChiTransformer: Towards Reliable Stereo from Cues,
CVPR22(1929-1939)
IEEE DOI 2210
Code, Stereo.
WWW Link. Optical polarization, Biomedical optical imaging, Optical design, Stereo image processing, Estimation, Visual systems, Self- semi- meta- unsupervised learning BibRef

Xie, Z.J.[Zhi-Jie], Rao, Y.[Yuan], Hu, Y.Q.[Ye-Qi], Fan, H.[Hao], Qi, L.[Lin], Dong, J.Y.[Jun-Yu],
Cascaded Feature Interaction Network for Stereo Matching,
ICIVC22(312-318)
IEEE DOI 2301
Costs, Fuses, Memory management, Network architecture, Benchmark testing, Task analysis, stereo matching, disparity range, feature interaction BibRef

Li, J.K.[Jian-Kun], Wang, P.[Peisen], Xiong, P.F.[Peng-Fei], Cai, T.[Tao], Yan, Z.W.[Zi-Wei], Yang, L.[Lei], Liu, J.Y.[Jiang-Yu], Fan, H.Q.[Hao-Qiang], Liu, S.C.[Shuai-Cheng],
Practical Stereo Matching via Cascaded Recurrent Network with Adaptive Correlation,
CVPR22(16242-16251)
IEEE DOI 2210
Correlation, Adaptive systems, Training data, Benchmark testing, Network architecture, Real-time systems, Low-level vision BibRef

Guo, W.[Wei], Zhu, Z.Y.[Zi-Yu], Xia, F.[Fukun], Sun, J.R.[Jia-Rui], Zhao, Y.[Yong],
Hierarchical and Multi-Level Cost Aggregation for Stereo Matching,
ICIP21(2863-2867)
IEEE DOI 2201
Deep learning, Image processing, Estimation, Robustness, Convolutional neural networks, Stereo matching, hierarchical, refined disparity map BibRef

Mao, Y.M.[Ya-Min], Liu, Z.H.[Zhi-Hua], Li, W.M.[Wei-Ming], Dai, Y.C.[Yu-Chao], Wang, Q.[Qiang], Kim, Y.T.[Yun-Tae], Lee, H.S.[Hong-Seok],
UASNet: Uncertainty Adaptive Sampling Network for Deep Stereo Matching,
ICCV21(6291-6299)
IEEE DOI 2203
Adaptation models, Uncertainty, Costs, Adaptive systems, Benchmark testing, Predictive models, Stereo, Vision for robotics and autonomous vehicles BibRef

Kwon, O.H.[Oh-Hun], Zell, E.[Eduard],
Image-Coupled Volume Propagation for Stereo Matching,
ICIP23(2510-2514)
IEEE DOI Code:
WWW Link. 2312
BibRef

Shamsafar, F.[Faranak], Woerz, S.[Samuel], Rahim, R.[Rafia], Zell, A.[Andreas],
MobileStereoNet: Towards Lightweight Deep Networks for Stereo Matching,
WACV22(677-686)
IEEE DOI 2202
Convolutional codes, Solid modeling, Costs, Computational modeling, Vision Systems and Applications BibRef

Rahim, R.[Rafia], Shamsafar, F.[Faranak], Zell, A.[Andreas],
Separable Convolutions for Optimizing 3D Stereo Networks,
ICIP21(3208-3212)
IEEE DOI 2201
Deep learning, Image processing, Computational complexity, Stereo Matching, Separable Convolutions, Disparity Estimation, CNNs BibRef

Hou, Y.X.[Yu-Xin], Janjua, M.K.[Muhammad Kamran], Kannala, J.H.[Ju-Ho], Solin, A.[Arno],
Movement-induced Priors for Deep Stereo,
ICPR21(3628-3635)
IEEE DOI 2105
Training, Micromechanical devices, Handheld computers, Estimation, Gaussian processes, Sensors BibRef

Hirner, D.[Dominik], Fraundorfer, F.[Friedrich],
FC-DCNN: A densely connected neural network for stereo estimation,
ICPR21(2482-2489)
IEEE DOI 2105
Matched filters, Image segmentation, Filtering, Neural networks, Estimation, Benchmark testing BibRef

Poggi, M.[Matteo], Tosi, F.[Fabio], Aleotti, F.[Filippo], Mattoccia, S.[Stefano],
Leveraging a weakly adversarial paradigm for joint learning of disparity and confidence estimation,
ICPR21(270-277)
IEEE DOI 2105
Training, Wide area networks, Uncertainty, Estimation, Deep architecture, Training data, Pattern recognition BibRef

Zhang, J.Y.[Jing-Yang], Yao, Y.[Yao], Luo, Z.X.[Zi-Xin], Li, S.W.[Shi-Wei], Shen, T.W.[Tian-Wei], Fang, T.[Tian], Quan, L.[Long],
Learning Stereo Matchability in Disparity Regression Networks,
ICPR21(1611-1618)
IEEE DOI 2105
Training, Refining, Benchmark testing, Attenuation, Entropy, Pattern recognition BibRef

Beaupre, D.A.[David-Alexandre], Bilodeau, G.A.[Guillaume-Alexandre],
Domain Siamese CNNs for Sparse Multispectral Disparity Estimation,
ICPR21(3667-3674)
IEEE DOI 2105
Visualization, Correlation, Merging, Estimation, Feature extraction, Robustness, Surface texture BibRef

Xu, B.[Bin], Xu, Y.H.[Yu-Hua], Yang, X.L.[Xiao-Li], Jia, W.[Wei], Guo, Y.L.[Yu-Lan],
Bilateral Grid Learning for Stereo Matching Networks,
CVPR21(12492-12501)
IEEE DOI 2111
Costs, Codes, Navigation, Estimation, Complex networks, Network architecture BibRef

Zhang, D.[Doudou], Cai, J.[Jing], Xue, Y.B.[Yan-Bing], Gao, Z.[Zan], Zhang, H.[Hua],
Attention Stereo Matching Network,
ICPR21(4973-4980)
IEEE DOI 2105
Geometry, Correlation, Benchmark testing, Real-time systems, Spatial resolution BibRef

Yang, Z.[Zuliu], Ai, X.D.[Xin-Dong], Yang, W.[Weida], Zhao, Y.[Yong], Dai, Q.F.[Qi-Fei], Li, F.[Fuchi],
Deeply-fused Attentive Network for Stereo Matching,
ICPR21(1717-1724)
IEEE DOI 2105
Fuses, Logic gates, Feature extraction, Prediction algorithms, Encoding BibRef

Wang, H.Y.[Hai-Yang], Wang, X.C.[Xin-Chao], Song, J.[Jie], Lei, J.[Jie], Song, M.L.[Ming-Li],
Faster Self-adaptive Deep Stereo,
ACCV20(I:175-191).
Springer DOI 2103
BibRef

Chen, S.Y.[Shu-Ya], Xiang, Z.Y.[Zhi-Yu], Qiao, C.Y.[Cheng-Yu], Chen, Y.M.[Yi-Man], Bai, T.M.[Ting-Ming],
Sgnet: Semantics Guided Deep Stereo Matching,
ACCV20(I:106-122).
Springer DOI 2103
BibRef

Xing, J.B.[Jia-Bin], Qi, Z.[Zhi], Dong, J.Y.[Ji-Ying], Cai, J.X.[Jia-Xuan], Liu, H.[Hao],
Mabnet: A Lightweight Stereo Network Based on Multibranch Adjustable Bottleneck Module,
ECCV20(XXVIII:340-356).
Springer DOI 2011
BibRef

Zhang, F.H.[Fei-Hu], Qi, X.J.[Xiao-Juan], Yang, R.G.[Rui-Gang], Prisacariu, V.[Victor], Wah, B.W.[Benjamin W.], Torr, P.H.S.[Philip H.S.],
Domain-invariant Stereo Matching Networks,
ECCV20(II:420-439).
Springer DOI 2011
BibRef

Chen, Y.[Yang], Lu, Z.Q.[Zong-Qing], Zhang, X.C.[Xue-Chen], Chen, L.[Lei], Liao, Q.M.[Qing-Min],
Noise-Sampling Cross Entropy Loss: Improving Disparity Regression Via Cost Volume Aware Regularizer,
ICIP20(2780-2784)
IEEE DOI 2011
Entropy, Estimation, Laplace equations, Neural networks, Machine learning, Coherence, Training, Stereo matching, cost volume, noise-sampling BibRef

Liu, R., Yang, C., Sun, W., Wang, X., Li, H.,
StereoGAN: Bridging Synthetic-to-Real Domain Gap by Joint Optimization of Domain Translation and Stereo Matching,
CVPR20(12754-12763)
IEEE DOI 2008
Training, Optimization, Estimation, Neural networks, Correlation, Pattern matching, Distortion BibRef

Xu, H.F.[Hao-Fei], Zhang, J.Y.[Ju-Yong],
AANet: Adaptive Aggregation Network for Efficient Stereo Matching,
CVPR20(1956-1965)
IEEE DOI 2008
Feature extraction, Adaptive systems, Correlation, Neural networks BibRef

Renteria-Vidales, O.I., Cuevas-Tello, J.C., Reyes-Figueroa, A., Rivera, M.,
Modulenet: A Convolutional Neural Network for Stereo Vision,
MCPR20(219-228).
Springer DOI 2007
BibRef

Zhang, F.H.[Fei-Hu], Prisacariu, V.[Victor], Yang, R.G.[Rui-Gang], Torr, P.H.S.[Philip H.S.],
GA-Net: Guided Aggregation Net for End-To-End Stereo Matching,
CVPR19(185-194).
IEEE DOI 2002
BibRef

Wu, Z., Wu, X., Zhang, X., Wang, S., Ju, L.,
Semantic Stereo Matching With Pyramid Cost Volumes,
ICCV19(7483-7492)
IEEE DOI 2004
convolutional neural nets, feature extraction, image matching, image segmentation, learning (artificial intelligence), Optical imaging BibRef

Chen, C., Chen, X., Cheng, H.,
On the Over-Smoothing Problem of CNN Based Disparity Estimation,
ICCV19(8996-9004)
IEEE DOI 2004
Code, Stereo.
WWW Link. convolutional neural nets, estimation theory, image segmentation, learning (artificial intelligence), probability, Entropy BibRef

Liang, Z., Feng, Y., Guo, Y., Liu, H., Chen, W., Qiao, L., Zhou, L., Zhang, J.,
Learning for Disparity Estimation Through Feature Constancy,
CVPR18(2811-2820)
IEEE DOI 1812
Estimation, Convolution, Correlation, Feature extraction, Image reconstruction, Network architecture BibRef

Seabright, M., Streeter, L., Cree, M., Duke, M., Tighe, R.,
Simple Stereo Matching Algorithm for Localising Keypoints in a Restricted Search Space,
IVCNZ18(1-6)
IEEE DOI 1902
Cameras, Geometry, Calibration, Approximation algorithms, Search problems, Yield estimation, convolutional neural networks BibRef

Mao, W., Gong, M.,
Disparity Filtering with 3D Convolutional Neural Networks,
CRV18(246-253)
IEEE DOI 1812
Training, Optimization, 3D CNNs BibRef

Moskvyak, O.[Olga], Maire, F.[Frederic],
Learning Geometric Equivalence between Patterns Using Embedding Neural Networks,
DICTA17(1-8)
IEEE DOI 1804
Equivalence: 2 dfifferent views of the same object. biology computing, cameras, ecology, equivalence classes, geometry, image recognition, Training BibRef

Shaked, A., Wolf, L.B.[Lior B.],
Improved Stereo Matching with Constant Highway Networks and Reflective Confidence Learning,
CVPR17(6901-6910)
IEEE DOI 1711
Benchmark testing, Network architecture, Neural networks, Pipelines, Road transportation, Training BibRef

Pang, J., Sun, W., Ren, J.S., Yang, C., Yan, Q.,
Cascade Residual Learning: A Two-Stage Convolutional Neural Network for Stereo Matching,
DeepLearn-G17(878-886)
IEEE DOI 1802
Convolution, Estimation, Optimization, Training BibRef

Zhou, C., Zhang, H., Shen, X., Jia, J.,
Unsupervised Learning of Stereo Matching,
ICCV17(1576-1584)
IEEE DOI 1802
convolution, image matching, iterative methods, neural nets, random processes, stereo image processing, unsupervised learning, Unsupervised learning BibRef

Seki, A.[Akihito], Pollefeys, M.[Marc],
SGM-Nets: Semi-Global Matching with Neural Networks,
CVPR17(6640-6649)
IEEE DOI 1711
BibRef
And:
Patch Based Confidence Prediction for Dense Disparity Map,
BMVC16(xx-yy).
HTML Version. 1805
Semi-Global Matching. Estimation, Image edge detection, Neural networks, Pipelines, Standards, Testing BibRef

Yuan, W., Fan, Z., Yuan, X., Gong, J., Shibasaki, R.,
Unsupervised Multi-constraint Deep Neural Network for Dense Image Matching,
ISPRS20(B2:163-167).
DOI Link 2012
BibRef

Yuan, W.[Wei], Chen, S.Y.[Shi-Yu], Zhang, Y.[Yong], Gong, J.Y.[Jian-Ya], Shibasaki, R.[Ryosuke],
An Aerial-image Dense Matching Approach Based On Optical Flow Field,
ISPRS16(B3: 543-548).
DOI Link 1610
BibRef

Zbontar, J.[Jure], Le Cun, Y.L.[Yann L.],
Computing the stereo matching cost with a convolutional neural network,
CVPR15(1592-1599)
IEEE DOI 1510
BibRef

Thomas, B., Yegnanarayana, B., Das, S.,
Stereo-correspondence using Gabor logons and neural networks,
ICIP95(II: 386-389).
IEEE DOI 9510
BibRef

Chapter on Stereo: Three Dimensional Descriptions from Two or More Views, Binocular, Trinocular continues in
Multi-Scale Matching for Stereo .


Last update:Jan 20, 2025 at 11:36:25