Jordan, M.I.,
Jacobs, R.A.,
Hierarchical Mixture of experts and the EM Algorithm,
NeurComp(6), 1994, pp. 181-214.
Combining results.
BibRef
9400
Hinton, G.E.[Geoffrey E.],
Training products of experts by minimizing contrastive divergence,
NeurComp(14), No. 8, 2002, pp. 1771-1800.
DOI Link
BibRef
0200
Raudys, S.J.[Sarunas J.],
Experts' boasting in trainable fusion rules,
PAMI(25), No. 9, September 2003, pp. 1178-1182.
IEEE Abstract.
0309
Experts can lead to biases in fusion rules if training of experts and
fusion rules use the same data.
BibRef
Lu, Z.W.[Zhi-Wu],
A regularized minimum cross-entropy algorithm on mixtures of experts
for time series prediction and curve detection,
PRL(27), No. 9, July 2006, pp. 947-955.
Elsevier DOI Regularization theory; Model selection; Time series prediction; Curve detection
0605
BibRef
Goodband, J.H.,
Haas, O.C.L.,
Mills, J.A.,
A mixture of experts committee machine to design compensators for
intensity modulated radiation therapy,
PR(39), No. 9, September 2006, pp. 1704-1714.
Elsevier DOI
0606
Committee machines; Neural networks; Fuzzy C-means; Compensators;
Radiation therapy
BibRef
Couturier, S.[Stéphane],
Mas, J.F.[Jean-François],
Mountrakis, G.[Giorgos],
Watts, R.[Raymond],
Luo, L.[Lori],
Wang, J.[Jida],
Developing Collaborative Classifiers using an Expert-based Model,
PhEngRS(75), No. 7, July 2009, pp. 831-844.
DOI Link
0910
A novel framework for integrating classifiers of variable complexity
as applied to specific portions of the input space.
BibRef
Abbas, A.,
Andreopoulos, Y.,
Biased Mixtures of Experts: Enabling Computer Vision Inference Under
Data Transfer Limitations,
IP(29), 2020, pp. 7656-7667.
IEEE DOI
2007
Mixtures of experts, constrained data transfer,
single shot object detection, single image super resolution,
realtime action classification
BibRef
Ashtari, P.[Pooya],
Haredasht, F.N.[Fateme Nateghi],
Beigy, H.[Hamid],
Supervised fuzzy partitioning,
PR(97), 2020, pp. 107013.
Elsevier DOI
1910
Supervised k-means, Centroid-based clustering,
Entropy-based regularization, Feature weighting, Mixtures of experts
BibRef
Bicici, U.C.[Ufuk Can],
Akarun, L.[Lale],
Conditional information gain networks as sparse mixture of experts,
PR(120), 2021, pp. 108151.
Elsevier DOI
2109
Machine learning, Deep learning, Conditional deep learning
BibRef
Korotin, A.[Alexander],
Vyugin, V.[Vladimir],
Burnaev, E.[Evgeny],
Mixability of integral losses: A key to efficient online aggregation
of functional and probabilistic forecasts,
PR(120), 2021, pp. 108175.
Elsevier DOI
2109
Integral loss functions, Mixability, Exponential concavity,
Prediction with expert advice, Functional forecasting,
Probabilistic forecasting
BibRef
Vyugin, V.[Vladimir],
Trunov, V.[Vladimir],
Online aggregation of probability forecasts with confidence,
PR(121), 2022, pp. 108193.
Elsevier DOI
2109
On-line learning, Prediction with expert advice,
Aggregating algorithm, Probabilistic prediction,
Smooth confidence levels for experts
BibRef
Kalnishkan, Y.[Yuri],
Prediction with expert advice for a finite number of experts:
A practical introduction,
PR(126), 2022, pp. 108557.
Elsevier DOI
2204
Online learning, Prediction, Model selection
BibRef
Wu, D.[Di],
Xie, Y.R.[Yu-Rong],
Qiang, Z.[Zhe],
An efficient EM algorithm for two-layer mixture model of gaussian
process functional regressions,
PR(143), 2023, pp. 109783.
Elsevier DOI
2310
Mixture of gaussian processes, Hierarchical mixture of experts,
Classification EM algorithm, Curve clustering
BibRef
Xu, L.[Li],
Liu, J.[Jun],
Experts Collaboration Learning for Continual Multi-Modal Reasoning,
IP(32), 2023, pp. 5087-5098.
IEEE DOI
2310
BibRef
Togban, E.[Elvis],
Ziou, D.[Djemel],
Hierarchical mixture of discriminative Generalized Dirichlet
classifiers,
PR(156), 2024, pp. 110789.
Elsevier DOI
2408
Compositional data, Generalized Dirichlet, Hierarchical mixture of experts,
Variational approximation, Upper-bound of generalized Dirichlet mixture
BibRef
Zhang, F.[Fan],
Chen, C.[Chong],
Hua, X.S.[Xian-Sheng],
Luo, X.[Xiao],
FATE: Learning Effective Binary Descriptors With Group Fairness,
IP(33), 2024, pp. 3648-3661.
IEEE DOI
2406
Codes, Image retrieval, Feature extraction,
Adversarial machine learning, Semantics, Optimization, Ethics,
mixture of experts
BibRef
Liu, Y.H.[Yu-Hao],
Ajirak, M.[Marzieh],
Djuric, P.M.[Petar M.],
Gaussian Process-Gated Hierarchical Mixtures of Experts,
PAMI(46), No. 9, September 2024, pp. 6443-6453.
IEEE DOI
2408
Kernel, Decision trees, Bayes methods, Global Positioning System,
Regression tree analysis, Artificial neural networks, Vegetation,
and random features
BibRef
Xu, F.B.[Fang-Bin],
Chen, D.Y.[Dong-Yue],
Jia, T.[Tong],
Deng, S.Z.[Shi-Zhuo],
Wang, H.[Hao],
CBDMoE: Consistent-but-Diverse Mixture of Experts for Domain
Generalization,
MultMed(26), 2024, pp. 9814-9824.
IEEE DOI
2410
Ensemble learning, Training, Task analysis, IEL, Data models,
Training data, Data augmentation, Domain generalization,
diversification learning
BibRef
Wang, M.Z.[Meng-Zhu],
Su, H.C.[Hou-Cheng],
Wang, S.[Sijia],
Wang, S.S.[Shan-Shan],
Yin, N.[Nan],
Shen, L.[Li],
Lan, L.[Long],
Yang, L.[Liang],
Cao, X.C.[Xiao-Chun],
Graph Convolutional Mixture-of-Experts Learner Network for
Long-Tailed Domain Generalization,
CirSysVideo(35), No. 7, July 2025, pp. 6936-6947.
IEEE DOI
2507
Heavily-tailed distribution, Adaptation models, Training,
Data models, Data augmentation,
domain-invariant feature
BibRef
Berisha, U.[Uranik],
Mehnert, J.[Jens],
Condurache, A.P.[Alexandru Paul],
Efficient Data Driven Mixture-of-Expert Extraction from Trained
Networks,
CVPR25(20082-20091)
IEEE DOI
2508
Training, Image recognition, Computational modeling, Transformers,
Data models, Computational efficiency, Data mining, vision transformer
BibRef
Chen, T.L.[Tian-Long],
Chen, X.[Xuxi],
Du, X.Z.[Xian-Zhi],
Rashwan, A.[Abdullah],
Yang, F.[Fan],
Chen, H.Z.[Hui-Zhong],
Wang, Z.Y.[Zhang-Yang],
Li, Y.Q.[Ye-Qing],
AdaMV-MoE: Adaptive Multi-Task Vision Mixture-of-Experts,
ICCV23(17300-17311)
IEEE DOI Code:
WWW Link.
2401
BibRef
Ye, H.[Hanrong],
Xu, D.[Dan],
TaskExpert: Dynamically Assembling Multi-Task Representations with
Memorial Mixture-of-Experts,
ICCV23(21771-21780)
IEEE DOI
2401
BibRef
Cao, B.[Bing],
Sun, Y.M.[Yi-Ming],
Zhu, P.F.[Peng-Fei],
Hu, Q.H.[Qing-Hua],
Multi-modal Gated Mixture of Local-to-Global Experts for Dynamic
Image Fusion,
ICCV23(23498-23507)
IEEE DOI Code:
WWW Link.
2401
BibRef
Zhang, G.H.[Guan-Hua],
Zhang, H.[Huan],
Chen, P.Y.[Pin-Yu],
Chang, S.Y.[Shi-Yu],
Wang, Z.Y.[Zhang-Yang],
Liu, S.[Sijia],
Robust Mixture-of-Expert Training for Convolutional Neural Networks,
ICCV23(90-101)
IEEE DOI Code:
WWW Link.
2401
BibRef
Zhao, W.B.[Wen-Bo],
Gao, Y.[Yang],
Memon, S.A.[Shahan Ali],
Raj, B.[Bhiksha],
Singh, R.[Rita],
Hierarchical Routing Mixture of Experts,
ICPR21(7900-7906)
IEEE DOI
2105
Predictive models, Routing, Probabilistic logic,
Prediction algorithms, Data models, Classification algorithms
BibRef
Bochinski, E.,
Jongebloed, R.,
Tok, M.,
Sikora, T.,
Regularized Gradient Descent Training of Steered Mixture of Experts
for Sparse Image Representation,
ICIP18(3873-3877)
IEEE DOI
1809
Kernel, Training, Optimization, Logic gates, Task analysis,
Gaussian mixture model, Sparse Image Representation,
Denoising
BibRef
Gross, S.,
Ranzato, M.[Marc'Aurelio],
Szlam, A.[Arthur],
Hard Mixtures of Experts for Large Scale Weakly Supervised Vision,
CVPR17(5085-5093)
IEEE DOI
1711
Data models, Decoding, Logic gates, Predictive models, Standards, Training
BibRef
Lad, S.,
Paredes, B.R.,
Valentin, J.,
Torr, P.H.S.[Philip H.S.],
Parikh, D.,
Knowing who to listen to: Prioritizing experts from a diverse
ensemble for attribute personalization,
ICIP16(4463-4467)
IEEE DOI
1610
Adaptation models
BibRef
Peng, J.[Jing],
Seetharaman, G.,
Combining the advice of experts with randomized boosting for robust
pattern recognition,
AIPR13(1-7)
IEEE DOI
1408
decision making
BibRef
Yuksel, S.E.[Seniha Esen],
Gader, P.D.[Paul D.],
Variational Mixture of Experts for Classification with Applications to
Landmine Detection,
ICPR10(2981-2984).
IEEE DOI
1008
BibRef
Fancourt, C.L.[Craig L.],
Principe, J.C.[Jose C.],
Soft Competitive Principal Component Analysis Using
the Mixture of Experts,
DARPA97(1071-1076).
BibRef
9700
Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
Hierarchical Combination, Multi-Stage Classifiers .