Jordan, M.I.,
Jacobs, R.A.,
Hierarchical Mixture of experts and the EM Algorithm,
NeurComp(6), 1994, pp. 181-214.
Combining results.
BibRef
9400
Hinton, G.E.[Geoffrey E.],
Training products of experts by minimizing contrastive divergence,
NeurComp(14), No. 8, 2002, pp. 1771-1800.
DOI Link
BibRef
0200
Raudys, S.J.[Sarunas J.],
Experts' boasting in trainable fusion rules,
PAMI(25), No. 9, September 2003, pp. 1178-1182.
IEEE Abstract.
0309
Experts can lead to biases in fusion rules if training of experts and
fusion rules use the same data.
BibRef
Lu, Z.W.[Zhi-Wu],
A regularized minimum cross-entropy algorithm on mixtures of experts
for time series prediction and curve detection,
PRL(27), No. 9, July 2006, pp. 947-955.
Elsevier DOI Regularization theory; Model selection; Time series prediction; Curve detection
0605
BibRef
Goodband, J.H.,
Haas, O.C.L.,
Mills, J.A.,
A mixture of experts committee machine to design compensators for
intensity modulated radiation therapy,
PR(39), No. 9, September 2006, pp. 1704-1714.
Elsevier DOI
0606
Committee machines; Neural networks; Fuzzy C-means; Compensators;
Radiation therapy
BibRef
Abbas, A.,
Andreopoulos, Y.,
Biased Mixtures of Experts: Enabling Computer Vision Inference Under
Data Transfer Limitations,
IP(29), 2020, pp. 7656-7667.
IEEE DOI
2007
Mixtures of experts, constrained data transfer,
single shot object detection, single image super resolution,
realtime action classification
BibRef
Ashtari, P.[Pooya],
Haredasht, F.N.[Fateme Nateghi],
Beigy, H.[Hamid],
Supervised fuzzy partitioning,
PR(97), 2020, pp. 107013.
Elsevier DOI
1910
Supervised k-means, Centroid-based clustering,
Entropy-based regularization, Feature weighting, Mixtures of experts
BibRef
Bicici, U.C.[Ufuk Can],
Akarun, L.[Lale],
Conditional information gain networks as sparse mixture of experts,
PR(120), 2021, pp. 108151.
Elsevier DOI
2109
Machine learning, Deep learning, Conditional deep learning
BibRef
Zhang, F.[Fan],
Chen, C.[Chong],
Hua, X.S.[Xian-Sheng],
Luo, X.[Xiao],
FATE: Learning Effective Binary Descriptors With Group Fairness,
IP(33), 2024, pp. 3648-3661.
IEEE DOI
2406
Codes, Image retrieval, Feature extraction,
Adversarial machine learning, Semantics, Optimization, Ethics,
mixture of experts
BibRef
Liu, Y.H.[Yu-Hao],
Ajirak, M.[Marzieh],
Djuric, P.M.[Petar M.],
Gaussian Process-Gated Hierarchical Mixtures of Experts,
PAMI(46), No. 9, September 2024, pp. 6443-6453.
IEEE DOI
2408
Kernel, Decision trees, Bayes methods, Global Positioning System,
Regression tree analysis, Artificial neural networks, Vegetation,
and random features
BibRef
Xu, F.B.[Fang-Bin],
Chen, D.Y.[Dong-Yue],
Jia, T.[Tong],
Deng, S.Z.[Shi-Zhuo],
Wang, H.[Hao],
CBDMoE: Consistent-but-Diverse Mixture of Experts for Domain
Generalization,
MultMed(26), 2024, pp. 9814-9824.
IEEE DOI
2410
Ensemble learning, Training, Task analysis, IEL, Data models,
Training data, Data augmentation, Domain generalization,
diversification learning
BibRef
Ye, H.[Hanrong],
Xu, D.[Dan],
TaskExpert: Dynamically Assembling Multi-Task Representations with
Memorial Mixture-of-Experts,
ICCV23(21771-21780)
IEEE DOI
2401
BibRef
Cao, B.[Bing],
Sun, Y.M.[Yi-Ming],
Zhu, P.F.[Peng-Fei],
Hu, Q.H.[Qing-Hua],
Multi-modal Gated Mixture of Local-to-Global Experts for Dynamic
Image Fusion,
ICCV23(23498-23507)
IEEE DOI Code:
WWW Link.
2401
BibRef
Zhang, G.H.[Guan-Hua],
Zhang, H.[Huan],
Chen, P.Y.[Pin-Yu],
Chang, S.Y.[Shi-Yu],
Wang, Z.Y.[Zhang-Yang],
Liu, S.[Sijia],
Robust Mixture-of-Expert Training for Convolutional Neural Networks,
ICCV23(90-101)
IEEE DOI Code:
WWW Link.
2401
BibRef
Zhao, W.B.[Wen-Bo],
Gao, Y.[Yang],
Memon, S.A.[Shahan Ali],
Raj, B.[Bhiksha],
Singh, R.[Rita],
Hierarchical Routing Mixture of Experts,
ICPR21(7900-7906)
IEEE DOI
2105
Predictive models, Routing, Probabilistic logic,
Prediction algorithms, Data models, Classification algorithms
BibRef
Bochinski, E.,
Jongebloed, R.,
Tok, M.,
Sikora, T.,
Regularized Gradient Descent Training of Steered Mixture of Experts
for Sparse Image Representation,
ICIP18(3873-3877)
IEEE DOI
1809
Kernel, Training, Optimization, Logic gates, Task analysis,
Gaussian mixture model, Sparse Image Representation,
Denoising
BibRef
Gross, S.,
Ranzato, M.[Marc'Aurelio],
Szlam, A.[Arthur],
Hard Mixtures of Experts for Large Scale Weakly Supervised Vision,
CVPR17(5085-5093)
IEEE DOI
1711
Data models, Decoding, Logic gates, Predictive models, Standards, Training
BibRef
Peng, J.[Jing],
Seetharaman, G.,
Combining the advice of experts with randomized boosting for robust
pattern recognition,
AIPR13(1-7)
IEEE DOI
1408
decision making
BibRef
Yuksel, S.E.[Seniha Esen],
Gader, P.D.[Paul D.],
Variational Mixture of Experts for Classification with Applications to
Landmine Detection,
ICPR10(2981-2984).
IEEE DOI
1008
BibRef
Fancourt, C.L.[Craig L.],
Principe, J.C.[Jose C.],
Soft Competitive Principal Component Analysis Using
the Mixture of Experts,
DARPA97(1071-1076).
BibRef
9700
Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
Hierarchical Combination, Multi-Stage Classifiers .