Waksman, P.[Peter],
Greene, E.[Ernest],
Optical image encoding and comparing using scan autocorrelation,
US_Patent4,745,633, May 17, 1988
WWW Link.
BibRef
8805
Lin, H.C.,
Wang, L.L.,
Yang, S.N.,
Extracting Periodicity of a Regular Texture-Based on
Autocorrelation Functions,
PRL(18), No. 5, May 1997, pp. 433-443.
9708
BibRef
Brochard, J.[Jacques],
Khoudeir, M.[Majdi],
Augereau, B.[Bertrand],
Invariant feature extraction for 3D texture analysis using the
autocorrelation function,
PRL(22), No. 6-7, May 2001, pp. 759-768.
Elsevier DOI
0105
BibRef
Brochard, J.[Jacques],
Khoudeir, M.[Majdi],
Estimation of movement parameters of 3D textured surfaces using the
autocorrelation function,
PRL(24), No. 12, August 2003, pp. 2031-2045.
Elsevier DOI
0304
BibRef
Earlier:
Histogram Characterization of Colored textures Using One-Dimensional
Moments and Chromaticity Diagram,
VI02(428).
PDF File.
0208
BibRef
Bringier, B.[Benjamin],
Helbert, D.[David],
Khoudeir, M.[Majdi],
Photometric reconstruction of a dynamic textured surface from just one
color image acquisition,
JOSA-A(25), No. 3, March 2008, pp. 566-574.
DOI Link
0804
BibRef
Popovici, V.[Vlad],
Thiran, J.P.[Jean-Philippe],
Pattern Recognition using higher-order local autocorrelation
coefficients,
PRL(25), No. 10, 16 July 2004, pp. 1107-1113.
Elsevier DOI
0407
BibRef
Earlier:
Higher Order Autocorrelations for Pattern Classification,
ICIP01(III: 724-727).
IEEE DOI
0108
BibRef
Wang, W.,
Adali, T.,
Eigenanalysis of Autocorrelation Matrices in the Presence of Noncentral
and Signal-Dependent Noise,
SPLetters(12), No. 2, February 2005, pp. 85-88.
IEEE Abstract.
0501
BibRef
Kang, Y.[Yousun],
Morooka, K.[Ken'ichi],
Nagahashi, H.[Hiroshi],
Texture Classification Using Hierarchical Linear Discriminant Space,
IEICE(E88-D), No. 10, October 2005, pp. 2380-2388.
DOI Link
0510
BibRef
Earlier:
Scale Invariant Texture Analysis Using Multi-scale Local
Autocorrelation Features,
ScaleSpace05(363-373).
Springer DOI
0505
BibRef
Campisi, P.[Patrizio],
Colonnese, S.[Stefania],
Panci, G.[Gianpiero],
Scarano, G.[Gaetano],
Reduced Complexity Rotation Invariant Texture Classification Using a
Blind Deconvolution Approach,
PAMI(28), No. 1, January 2006, pp. 145-149.
IEEE DOI
0512
Features computed from one-dimensional slices extracted from the
two-dimensional autocorrelation function (ACF) of the binary
excitation allows representing the texture for rotation-invariant
classification.
BibRef
Toyoda, T.[Takahiro],
Hasegawa, O.[Osamu],
Extension of higher order local autocorrelation features,
PR(40), No. 5, May 2007, pp. 1466-1473.
Elsevier DOI
0702
Higher order local autocorrelation features; Texture classification;
Face recognition; Outex database; AT&T database
BibRef
Kawewong, A.,
Hasegawa, O.[Osamu],
3D Texture Classification by Using Pre-Testing Stage and Reliability
Table,
ICIP05(II: 1330-1333).
IEEE DOI
0512
Combine classification for texture.
BibRef
Li, P.J.[Pei-Jun],
Cheng, T.[Tao],
Guo, J.C.[Jian-Cong],
Multivariate Image Texture by Multivariate Variogram for Multispectral
Image Classification,
PhEngRS(75), No. 2, February 2009, pp. 147-158.
WWW Link.
0902
A multivariate texture measure by the multivariate variogram for the
multispectral imagery which characterizes the multivariate spatial
autocorrelation (spatial variability) between all the bands for image
classification.
BibRef
Susan, S.[Seba],
Hanmandlu, M.[Madasu],
Difference theoretic feature set for scale-, illumination- and
rotation-invariant texture classification,
IET-IPR(7), No. 8, November 2013, pp. 725-732.
DOI Link
1402
correlation theory
BibRef
Salman, M.S.[Mohammad Shukri],
Kukrer, O.[Osman],
Hocanin, A.[Aykut],
Recursive inverse adaptive algorithm:
A second-order version, a fast implementation technique,
and further results,
SIViP(9), No. 3, March 2015, pp. 665-673.
Springer DOI
1503
BibRef
Arriaga-Trejo, I.A.,
Orozco-Lugo, A.G.,
Flores-Troncoso, J.,
Design of Unimodular Sequences With Good Autocorrelation and Good
Complementary Autocorrelation Properties,
SPLetters(24), No. 8, August 2017, pp. 1153-1157.
IEEE DOI
1708
correlation theory, minimisation, nonlinear functions,
aperiodic autocorrelation properties, complex sequences,
good complementary autocorrelation properties,
nonlinear function minimization, second-order characterization,
time domain properties, unimodular sequence design,
weighted integrated side-lobe level, Channel estimation,
Correlation, Indexes, Linear programming, Linear systems,
Minimization, Signal processing algorithms,
Complementary correlation, correlation unimodular sequences
BibRef
Sun, S.[Shuai],
Zhang, H.P.[Hai-Ping],
Flow-Data-Based Global Spatial Autocorrelation Measurements for
Evaluating Spatial Interactions,
IJGI(12), No. 10, 2023, pp. 396.
DOI Link
2311
BibRef
Sourice, A.,
Plantier, G.,
Saumet, J.,
Autocorrelation fitting for texture orientation estimation,
ICIP03(I: 281-284).
IEEE DOI
0312
BibRef
Peng, J.X.[Jia-Xiong],
The Identification of Autocorrelation Model of Discrete Random Images,
ICPR88(II: 1026-1028).
IEEE DOI
8811
BibRef
Chapter on 2-D Feature Analysis, Extraction and Representations, Shape, Skeletons, Texture continues in
Statistical Image Models .