Romano, Y.[Yaniv],
Aberdam, A.[Aviad],
Sulam, J.[Jeremias],
Elad, M.[Michael],
Adversarial Noise Attacks of Deep Learning Architectures:
Stability Analysis via Sparse-Modeled Signals,
JMIV(62), No. 3, April 2020, pp. 313-327.
Springer DOI
2004
BibRef
Zhao, Z.Q.[Zhi-Qun],
Wang, H.Y.[Heng-You],
Sun, H.[Hao],
Yuan, J.H.[Jian-He],
Huang, Z.C.[Zhong-Chao],
He, Z.H.[Zhi-Hai],
Removing Adversarial Noise via Low-Rank Completion of
High-Sensitivity Points,
IP(30), 2021, pp. 6485-6497.
IEEE DOI
2107
Perturbation methods, Training, Neural networks, Image denoising,
Optimization, TV, Sensitivity, Adversarial examples, TV norm
BibRef
Nguyen, H.H.[Huy H.],
Kuribayashi, M.[Minoru],
Yamagishi, J.[Junichi],
Echizen, I.[Isao],
Effects of Image Processing Operations on Adversarial Noise and Their
Use in Detecting and Correcting Adversarial Images,
IEICE(E105-D), No. 1, January 2022, pp. 65-77.
WWW Link.
2201
BibRef
Gao, S.[Song],
Yu, S.[Shui],
Wu, L.W.[Li-Wen],
Yao, S.W.[Shao-Wen],
Zhou, X.W.[Xiao-Wei],
Detecting adversarial examples by additional evidence from noise
domain,
IET-IPR(16), No. 2, 2022, pp. 378-392.
DOI Link
2201
BibRef
Cheng, Y.P.[Yu-Peng],
Guo, Q.[Qing],
Juefei-Xu, F.[Felix],
Lin, S.W.[Shang-Wei],
Feng, W.[Wei],
Lin, W.S.[Wei-Si],
Liu, Y.[Yang],
Pasadena: Perceptually Aware and Stealthy Adversarial Denoise Attack,
MultMed(24), 2022, pp. 3807-3822.
IEEE DOI
2208
Noise reduction, Kernel, Task analysis, Image denoising,
Image quality, Noise measurement, Deep learning, adversarial attack
BibRef
Yang, D.[Dong],
Chen, W.[Wei],
Wei, S.J.[Song-Jie],
DTFA: Adversarial attack with discrete cosine transform noise and
target features on deep neural networks,
IET-IPR(17), No. 5, 2023, pp. 1464-1477.
DOI Link
2304
adversarial example, image classification, regional sampling, target attack
BibRef
Ying, C.Y.[Cheng-Yang],
You, Q.B.[Qiao-Ben],
Zhou, X.N.[Xin-Ning],
Su, H.[Hang],
Ding, W.B.[Wen-Bo],
Ai, J.Y.[Jian-Yong],
Consistent attack: Universal adversarial perturbation on embodied
vision navigation,
PRL(168), 2023, pp. 57-63.
Elsevier DOI
2304
Embodied agent, Vision navigation, Deep neural networks,
Universal adversarial noise
BibRef
Li, Y.Z.[Yue-Zun],
Zhang, C.[Cong],
Qi, H.G.[Hong-Gang],
Lyu, S.W.[Si-Wei],
AdaNI: Adaptive Noise Injection to improve adversarial robustness,
CVIU(238), 2024, pp. 103855.
Elsevier DOI
2312
Image classification, Adversarial examples, Adversarial robustness
BibRef
Park, J.[Jeongeun],
Shin, S.[Seungyoun],
Hwang, S.[Sangheum],
Choi, S.[Sungjoon],
Elucidating robust learning with uncertainty-aware corruption pattern
estimation,
PR(138), 2023, pp. 109387.
Elsevier DOI
2303
Robust learning, Training with noisy labels,
Uncertainty estimation, Corruption pattern estimation
BibRef
Xie, W.C.[Wei-Cheng],
Luo, C.[Cheng],
Wang, G.[Gui],
Shen, L.L.[Lin-Lin],
Lai, Z.H.[Zhi-Hui],
Song, S.Y.[Si-Yang],
Network characteristics adaption and hierarchical feature exploration
for robust object recognition,
PR(149), 2024, pp. 110240.
Elsevier DOI Code:
WWW Link.
2403
Robust object recognition, Attention-based dropout,
Adaptive characteristics, Hierarchically-salient features
BibRef
He, X.L.[Xi-Lin],
Lin, Q.L.[Qin-Liang],
Luo, C.[Cheng],
Xie, W.C.[Wei-Cheng],
Song, S.Y.[Si-Yang],
Liu, F.[Feng],
Shen, L.L.[Lin-Lin],
Shift from Texture-bias to Shape-Bias:
Edge Deformation-Based Augmentation for Robust Object Recognition,
ICCV23(1526-1535)
IEEE DOI Code:
WWW Link.
2401
BibRef
Wei, H.[Hui],
Tang, H.[Hao],
Jia, X.M.[Xue-Mei],
Wang, Z.X.[Zhi-Xiang],
Yu, H.[Hanxun],
Li, Z.[Zhubo],
Satoh, S.[Shin'ichi],
Van Gool, L.J.[Luc J.],
Wang, Z.[Zheng],
Physical Adversarial Attack Meets Computer Vision: A Decade Survey,
PAMI(46), No. 12, December 2024, pp. 9797-9817.
IEEE DOI
2411
Survey, Adversarial Attacks. Perturbation methods, Data models, Biological system modeling,
Task analysis, Predictive models, Surveys, Adversarial attack,
survey
BibRef
Luzi, L.[Lorenzo],
Marrero, C.O.[Carlos Ortiz],
Wynar, N.[Nile],
Baraniuk, R.G.[Richard G.],
Henry, M.J.[Michael J.],
Evaluating generative networks using Gaussian mixtures of image
features,
WACV23(279-288)
IEEE DOI
2302
Image resolution, Inverse problems, Computational modeling,
Perturbation methods, Gaussian noise, Gaussian distribution,
adversarial attack and defense methods
BibRef
Choi, J.H.[Jun-Ho],
Zhang, H.[Huan],
Kim, J.H.[Jun-Hyuk],
Hsieh, C.J.[Cho-Jui],
Lee, J.S.[Jong-Seok],
Deep Image Destruction: Vulnerability of Deep Image-to-Image Models
against Adversarial Attacks,
ICPR22(1287-1293)
IEEE DOI
2212
Degradation, Training, Analytical models, Perturbation methods,
Noise reduction, Robustness
BibRef
Thakur, N.[Nupur],
Li, B.X.[Bao-Xin],
PAT: Pseudo-Adversarial Training For Detecting Adversarial Videos,
ArtOfRobust22(130-137)
IEEE DOI
2210
Training, Deep learning, Perturbation methods, Surveillance,
Gaussian noise, Neural networks
BibRef
Zhou, D.W.[Da-Wei],
Wang, N.N.[Nan-Nan],
Peng, C.L.[Chun-Lei],
Gao, X.B.[Xin-Bo],
Wang, X.Y.[Xiao-Yu],
Yu, J.[Jun],
Liu, T.L.[Tong-Liang],
Removing Adversarial Noise in Class Activation Feature Space,
ICCV21(7858-7867)
IEEE DOI
2203
Training, Deep learning, Adaptation models, Perturbation methods,
Computational modeling, Noise reduction, Adversarial learning,
Transfer/Low-shot/Semi/Unsupervised Learning
BibRef
Zhang, C.[Cheng],
Gao, P.[Pan],
Countering Adversarial Examples:
Combining Input Transformation and Noisy Training,
AROW21(102-111)
IEEE DOI
2112
Training, Image coding, Quantization (signal),
Perturbation methods, Computational modeling, Transform coding,
Artificial neural networks
BibRef
Deng, K.[Kang],
Peng, A.[Anjie],
Dong, W.L.[Wan-Li],
Zeng, H.[Hui],
Detecting C &W Adversarial Images Based on Noise
Addition-Then-Denoising,
ICIP21(3607-3611)
IEEE DOI
2201
Deep learning, Visualization, Perturbation methods, Gaussian noise,
Image processing, Noise reduction, Deep neural network,
Detection
BibRef
Tan, Y.X.M.[Yi Xianz Marcus],
Elovici, Y.[Yuval],
Binder, A.[Alexander],
Adaptive Noise Injection for Training Stochastic Student Networks
from Deterministic Teachers,
ICPR21(7587-7594)
IEEE DOI
2105
Training, Adaptation models, Adaptive systems,
Computational modeling, Stochastic processes, Machine learning,
stochastic networks
BibRef
Yan, B.,
Wang, D.,
Lu, H.,
Yang, X.,
Cooling-Shrinking Attack:
Blinding the Tracker With Imperceptible Noises,
CVPR20(987-996)
IEEE DOI
2008
Target tracking, Generators, Heating systems, Perturbation methods,
Object tracking, Training
BibRef
Yi, C.,
Li, H.,
Wan, R.,
Kot, A.C.,
Improving Robustness of DNNs against Common Corruptions via Gaussian
Adversarial Training,
VCIP20(17-20)
IEEE DOI
2102
Robustness, Perturbation methods, Training, Neural networks,
Standards, Gaussian noise, Tensors, Deep Learning,
Data Augmentation
BibRef
Liu, X.,
Xiao, T.,
Si, S.,
Cao, Q.,
Kumar, S.,
Hsieh, C.,
How Does Noise Help Robustness? Explanation and Exploration under the
Neural SDE Framework,
CVPR20(279-287)
IEEE DOI
2008
Neural networks, Robustness, Stochastic processes, Training,
Random variables, Gaussian noise, Mathematical model
BibRef
Dong, X.,
Han, J.,
Chen, D.,
Liu, J.,
Bian, H.,
Ma, Z.,
Li, H.,
Wang, X.,
Zhang, W.,
Yu, N.,
Robust Superpixel-Guided Attentional Adversarial Attack,
CVPR20(12892-12901)
IEEE DOI
2008
Perturbation methods, Robustness, Noise measurement,
Image color analysis, Pipelines, Agriculture
BibRef
Borkar, T.,
Heide, F.,
Karam, L.J.,
Defending Against Universal Attacks Through Selective Feature
Regeneration,
CVPR20(706-716)
IEEE DOI
2008
Perturbation methods, Training, Robustness, Noise reduction,
Image restoration, Transforms
BibRef
Li, G.,
Ding, S.,
Luo, J.,
Liu, C.,
Enhancing Intrinsic Adversarial Robustness via Feature Pyramid
Decoder,
CVPR20(797-805)
IEEE DOI
2008
Noise reduction, Robustness, Training, Image restoration,
Noise measurement, Decoding, Neural networks
BibRef
Shi, Y.,
Han, Y.,
Tian, Q.,
Polishing Decision-Based Adversarial Noise With a Customized Sampling,
CVPR20(1027-1035)
IEEE DOI
2008
Gaussian distribution, Sensitivity, Noise reduction, Optimization,
Image coding, Robustness, Standards
BibRef
He, Z.[Zhezhi],
Rakin, A.S.[Adnan Siraj],
Fan, D.L.[De-Liang],
Parametric Noise Injection: Trainable Randomness to Improve Deep Neural
Network Robustness Against Adversarial Attack,
CVPR19(588-597).
IEEE DOI
2002
BibRef
Kaneko, T.[Takuhiro],
Harada, T.[Tatsuya],
Blur, Noise, and Compression Robust Generative Adversarial Networks,
CVPR21(13574-13584)
IEEE DOI
2111
Degradation, Training, Adaptation models, Image coding, Uncertainty,
Computational modeling
BibRef
Kaneko, T.[Takuhiro],
Harada, T.[Tatsuya],
Noise Robust Generative Adversarial Networks,
CVPR20(8401-8411)
IEEE DOI
2008
Training, Noise measurement, Generators,
Noise robustness, Gaussian noise, Image generation
BibRef
Kaneko, T.[Takuhiro],
Ushiku, Y.[Yoshitaka],
Harada, T.[Tatsuya],
Label-Noise Robust Generative Adversarial Networks,
CVPR19(2462-2471).
IEEE DOI
2002
BibRef
Xie, C.[Cihang],
Wu, Y.X.[Yu-Xin],
van der Maaten, L.[Laurens],
Yuille, A.L.[Alan L.],
He, K.M.[Kai-Ming],
Feature Denoising for Improving Adversarial Robustness,
CVPR19(501-509).
IEEE DOI
2002
BibRef
Prakash, A.,
Moran, N.,
Garber, S.,
DiLillo, A.,
Storer, J.,
Deflecting Adversarial Attacks with Pixel Deflection,
CVPR18(8571-8580)
IEEE DOI
1812
Perturbation methods, Transforms, Minimization, Robustness,
Noise reduction, Training
BibRef
Liao, F.,
Liang, M.,
Dong, Y.,
Pang, T.,
Hu, X.,
Zhu, J.,
Defense Against Adversarial Attacks Using High-Level Representation
Guided Denoiser,
CVPR18(1778-1787)
IEEE DOI
1812
Training, Perturbation methods, Noise reduction,
Image reconstruction, Predictive models, Neural networks, Adaptation models
BibRef
Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
Adversarial Attacks .