Jimenez, L.O.,
Morales-Morell, A.,
Creus, A.,
Classification of Hyperdimensional Data Based on Feature and Decision
Fusion Approaches Using Projection Pursuit, Majority Voting, and Neural
Networks,
GeoRS(37), No. 3, May 1999, pp. 1360.
IEEE Top Reference.
BibRef
9905
Ratle, F.,
Camps-Valls, G.,
Weston, J.,
Semisupervised Neural Networks for Efficient Hyperspectral Image
Classification,
GeoRS(48), No. 5, May 2010, pp. 2271-2282.
IEEE DOI
1006
BibRef
Eddy, P.R.,
Smith, A.M.,
Hill, B.D.,
Peddle, D.R.,
Coburn, C.A.,
Blackshaw, R.E.,
Hybrid Segmentation: Artificial Neural Network Classification of High
Resolution Hyperspectral Imagery for Site-Specific Herbicide Management
in Agriculture,
PhEngRS(74), No. 10, October 2008, pp. 1249-1258.
WWW Link.
0804
A new, efficient AI method is presented for improved weed management
in crops with significant economic and environmental advantages.
BibRef
Rebetez, J.[Julien],
Tuia, D.[Devis],
Courty, N.[Nicolas],
Network-Based Correlated Correspondence for Unsupervised Domain
Adaptation of Hyperspectral Satellite Images,
ICPR14(3921-3926)
IEEE DOI
1412
Approximation algorithms.
Adapt to changes in data distribution.
BibRef
Zhong, P.[Ping],
Gong, Z.Q.[Zhi-Qiang],
Li, S.T.[Shu-Tao],
Schönlieb, C.B.[Carola-Bibiane],
Learning to Diversify Deep Belief Networks for Hyperspectral Image
Classification,
GeoRS(55), No. 6, June 2017, pp. 3516-3530.
IEEE DOI
1706
BibRef
Earlier: A1, A2, A4, Only:
A Diversified Deep Belief Network For Hyperspectral Image
Classification,
ISPRS16(B7: 443-449).
DOI Link
1610
Feature extraction, Hidden Markov models, Hyperspectral imaging,
Neurons, Training, Deep belief network (DBN), diversity,
hyperspectral image, image, classification
BibRef
Singhal, V.[Vanika],
Aggarwal, H.K.[Hemant K.],
Tariyal, S.[Snigdha],
Majumdar, A.[Angshul],
Discriminative Robust Deep Dictionary Learning for Hyperspectral
Image Classification,
GeoRS(55), No. 9, September 2017, pp. 5274-5283.
IEEE DOI
1709
deep belief network,
hyperspectral image classification, linear classifier,
BibRef
Goel, A.[Anurag],
Majumdar, A.[Angshul],
Semi-Supervised Graphical Deep Dictionary Learning for Hyperspectral
Image Classification From Limited Samples,
ICIP24(2108-2114)
IEEE DOI
2411
Training data, Imaging, Machine learning, Benchmark testing,
Hyperspectral imaging, Image classification,
Hyperspectral Imaging
BibRef
Singh, S.[Shikha],
Majumdar, A.[Angshul],
Chouzenoux, E.[Emilie],
Chierchia, G.[Giovanni],
Semi-supervised Deep Convolutional Transform Learning for
Hyperspectral Image Classification,
ICIP22(206-210)
IEEE DOI
2211
Measurement, Transforms, Machine learning, Information filters,
Hyperspectral imaging, Image classification,
deep learning
BibRef
Cao, X.Y.[Xiang-Yong],
Zhou, F.[Feng],
Xu, L.[Lin],
Meng, D.Y.[De-Yu],
Xu, Z.B.[Zong-Ben],
Paisley, J.[John],
Hyperspectral Image Classification With Markov Random Fields and a
Convolutional Neural Network,
IP(27), No. 5, May 2018, pp. 2354-2367.
IEEE DOI
1804
Bayes methods, Markov processes, convolution,
feedforward neural nets, gradient methods, hyperspectral imaging,
convolutional neural networks
BibRef
Cao, X.Y.[Xiang-Yong],
Yao, J.[Jing],
Xu, Z.B.[Zong-Ben],
Meng, D.Y.[De-Yu],
Hyperspectral Image Classification With Convolutional Neural Network
and Active Learning,
GeoRS(58), No. 7, July 2020, pp. 4604-4616.
IEEE DOI
2006
Training, Deep learning, Feature extraction, Labeling, Contracts,
Hyperspectral imaging, Active learning (AL),
Markov random field (MRF)
BibRef
Hong, D.F.[Dan-Feng],
Gao, L.R.[Lian-Ru],
Yao, J.[Jing],
Zhang, B.[Bing],
Plaza, A.[Antonio],
Chanussot, J.[Jocelyn],
Graph Convolutional Networks for Hyperspectral Image Classification,
GeoRS(59), No. 7, July 2021, pp. 5966-5978.
IEEE DOI
2106
Feature extraction, Convolution, Hyperspectral imaging,
Task analysis, Symmetric matrices, Fourier transforms, fusion
BibRef
Hao, S.,
Wang, W.,
Ye, Y.,
Nie, T.,
Bruzzone, L.,
Two-Stream Deep Architecture for Hyperspectral Image Classification,
GeoRS(56), No. 4, April 2018, pp. 2349-2361.
IEEE DOI
1804
Feature extraction, Hyperspectral imaging, Machine learning,
Training, Class-specific fusion,
two-stream architecture
BibRef
Hao, S.,
Wang, W.,
Ye, Y.,
Li, E.,
Bruzzone, L.,
A Deep Network Architecture for Super-Resolution-Aided Hyperspectral
Image Classification With Classwise Loss,
GeoRS(56), No. 8, August 2018, pp. 4650-4663.
IEEE DOI
1808
feature extraction, geophysical image processing,
hyperspectral imaging, image classification, image resolution,
super-resolution (SR)
BibRef
Yang, X.F.[Xiao-Fei],
Ye, Y.M.[Yun-Ming],
Li, X.T.[Xu-Tao],
Lau, R.Y.K.[Raymond Y. K.],
Zhang, X.F.[Xiao-Feng],
Huang, X.H.[Xiao-Hui],
Hyperspectral Image Classification With Deep Learning Models,
GeoRS(56), No. 9, September 2018, pp. 5408-5423.
IEEE DOI
1809
Hyperspectral imaging, Machine learning, Kernel, Context modeling,
Convolution, Task analysis, Convolutional neural network (CNN),
hyperspectral image
BibRef
Liu, B.[Bing],
Yu, X.C.[Xu-Chu],
Zhang, P.Q.[Peng-Qiang],
Yu, A.Z.[An-Zhu],
Fu, Q.Y.[Qiong-Ying],
Wei, X.P.[Xiang-Po],
Supervised Deep Feature Extraction for Hyperspectral Image
Classification,
GeoRS(56), No. 4, April 2018, pp. 1909-1921.
IEEE DOI
1804
Euclidean distance, Feature extraction, Hyperspectral imaging,
Support vector machines, Training,
support vector machine (SVM)
BibRef
Liu, B.[Bing],
Gao, K.L.[Kui-Liang],
Yu, A.Z.[An-Zhu],
Ding, L.[Lei],
Qiu, C.P.[Chun-Ping],
Li, J.[Jia],
ES2FL: Ensemble Self-Supervised Feature Learning for Small Sample
Classification of Hyperspectral Images,
RS(14), No. 17, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Li, J.J.[Jiao-Jiao],
Xi, B.[Bobo],
Li, Y.S.[Yun-Song],
Du, Q.[Qian],
Wang, K.[Keyan],
Hyperspectral Classification Based on Texture Feature Enhancement and
Deep Belief Networks,
RS(10), No. 3, 2018, pp. xx-yy.
DOI Link
1804
BibRef
Song, W.,
Li, S.,
Fang, L.,
Lu, T.,
Hyperspectral Image Classification With Deep Feature Fusion Network,
GeoRS(56), No. 6, June 2018, pp. 3173-3184.
IEEE DOI
1806
Convolutional neural networks, Feature extraction,
Hyperspectral imaging, Logistics, Support vector machines,
residual learning
BibRef
Ma, X.R.[Xiao-Rui],
Fu, A.[Anyan],
Wang, J.[Jie],
Wang, H.Y.[Hong-Yu],
Yin, B.C.[Bao-Cai],
Hyperspectral Image Classification Based on Deep Deconvolution
Network With Skip Architecture,
GeoRS(56), No. 8, August 2018, pp. 4781-4791.
IEEE DOI
1808
feedforward neural nets, geophysical image processing,
image classification, image representation,
hyperspectral image classification
BibRef
Ma, X.R.[Xiao-Rui],
Ji, S.[Sheng],
Wang, J.[Jie],
Geng, J.[Jie],
Wang, H.Y.[Hong-Yu],
Hyperspectral Image Classification Based on Two-Phase Relation
Learning Network,
GeoRS(57), No. 12, December 2019, pp. 10398-10409.
IEEE DOI
1912
Hyperspectral imaging, Training, Measurement, Deep learning,
Task analysis, Classification, deep network, hyperspectral image
BibRef
Ma, X.R.[Xiao-Rui],
Ji, S.[Sheng],
Wang, J.[Jie],
Liu, X.K.[Xiao-Kai],
Wang, H.Y.[Hong-Yu],
Classification of Hyperspectral Image Based on Task-Specific Learning
Network,
GeoRS(59), No. 10, October 2021, pp. 8646-8656.
IEEE DOI
2109
Hyperspectral imaging, Training, Feature extraction, Task analysis,
Knowledge engineering, Testing, Image edge detection,
metalearning
BibRef
Xu, M.[Meng],
Zhao, Y.Y.[Yuan-Yuan],
Liang, Y.J.[Ya-Jun],
Ma, X.R.[Xiao-Rui],
Hyperspectral Image Classification Based on Class-Incremental
Learning with Knowledge Distillation,
RS(14), No. 11, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Hamouda, M.[Maissa],
Ettabaa, K.S.[Karim Saheb],
Bouhlel, M.S.[Med Salim],
Hyperspectral imaging classification based on convolutional neural
networks by adaptive sizes of windows and filters,
IET-IPR(13), No. 2, February 2019, pp. 392-398.
DOI Link
1902
BibRef
Wu, P.[Peida],
Cui, Z.G.[Zi-Guan],
Gan, Z.L.[Zong-Liang],
Liu, F.[Feng],
Residual Group Channel and Space Attention Network for Hyperspectral
Image Classification,
RS(12), No. 12, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Chen, C.[Chen],
Ma, Y.[Yi],
Ren, G.B.[Guang-Bo],
A Convolutional Neural Network with Fletcher-Reeves Algorithm for
Hyperspectral Image Classification,
RS(11), No. 11, 2019, pp. xx-yy.
DOI Link
1906
BibRef
Hamouda, M.[Maissa],
Ettabaa, K.S.[Karim Saheb],
Bouhlel, M.S.[Med Salim],
Framework for Automatic Selection of Kernels based on Convolutional
Neural Networks and CkMeans Clustering Algorithm,
IJIG(19), No. 4 2019, pp. 1950019.
DOI Link
2001
BibRef
Hamouda, M.[Maissa],
Ettabaa, K.S.[Karim Saheb],
Bouhlel, M.S.[Med Salim],
Smart feature extraction and classification of hyperspectral images
based on convolutional neural networks,
IET-IPR(14), No. 10, August 2020, pp. 1999-2005.
DOI Link
2008
BibRef
Wang, L.,
Zhang, T.,
Fu, Y.,
Huang, H.,
HyperReconNet: Joint Coded Aperture Optimization and Image
Reconstruction for Compressive Hyperspectral Imaging,
IP(28), No. 5, May 2019, pp. 2257-2270.
IEEE DOI
1903
convolutional neural nets, data compression,
hyperspectral imaging, image coding, image reconstruction,
hyperspectral image reconstruction
BibRef
Haut, J.M.,
Paoletti, M.E.,
Plaza, J.,
Plaza, A.,
Li, J.,
Visual Attention-Driven Hyperspectral Image Classification,
GeoRS(57), No. 10, October 2019, pp. 8065-8080.
IEEE DOI
1910
convolutional neural nets, data analysis, feature extraction,
hyperspectral imaging, image classification, visual attention
BibRef
Akbari, D.[Davood],
Improved neural network classification of hyperspectral imagery using
weighted genetic algorithm and hierarchical segmentation,
IET-IPR(13), No. 12, October 2019, pp. 2169-2175.
DOI Link
1911
BibRef
Akbari, D.,
Moradizadeh, M.,
Akbari, M.,
Spectral-spatial Classification of Hyperspectral Imagery Using Neural
Network Algorithm and Hierarchical Segmentation,
PTVSBB19(1-5).
DOI Link
1912
BibRef
Akbari, D.,
Moradizadeh, M.,
Spectral-spatial Classification of Hyperspectral Imagery Using a Hybrid
Framework,
SMPR19(41-44).
DOI Link
1912
BibRef
Akbari, D.[Davood],
Safari, A.R.,
Rule-Based Classification of a Hyperspectral Image Using MSSC
Hierarchical Segmentation,
SMPR13(13-18).
DOI Link
1311
BibRef
Niazmardi, S.,
Safari, A.R.,
Homayouni, S.,
Maximum Margin Clustering of Hyperspectral Data,
SMPR13(305-308).
DOI Link
1311
BibRef
Paoletti, M.E.,
Haut, J.M.,
Plaza, J.,
Plaza, A.,
Deep learning classifiers for hyperspectral imaging: A review,
PandRS(158), 2019, pp. 279-317.
Elsevier DOI
1912
Survey, Hyperspectral Imaging. Deep learning (DL), Hyperspectral imaging (HSI),
Earth observation (EO), Classification
BibRef
Li, R.[Rui],
Zheng, S.Y.[Shun-Yi],
Duan, C.X.[Chen-Xi],
Yang, Y.[Yang],
Wang, X.Q.[Xi-Qi],
Classification of Hyperspectral Image Based on Double-Branch
Dual-Attention Mechanism Network,
RS(12), No. 3, 2020, pp. xx-yy.
DOI Link
2002
BibRef
Bera, S.[Somenath],
Shrivastava, V.K.[Vimal K.],
Effect of pooling strategy on convolutional neural network for
classification of hyperspectral remote sensing images,
IET-IPR(14), No. 3, 28 February 2020, pp. 480-486.
DOI Link
2002
BibRef
Niu, B.Q.[Bing-Qing],
Lan, J.H.[Jin-Hui],
Shao, Y.[Yang],
Zhang, H.[Hui],
A Dual-Branch Extraction and Classification Method Under Limited
Samples of Hyperspectral Images Based on Deep Learning,
RS(12), No. 3, 2020, pp. xx-yy.
DOI Link
2002
BibRef
Zhang, C.Y.[Cheng-Ye],
Yue, J.[Jun],
Qin, Q.M.[Qi-Ming],
Deep Quadruplet Network for Hyperspectral Image Classification with a
Small Number of Samples,
RS(12), No. 4, 2020, pp. xx-yy.
DOI Link
2003
BibRef
Zhao, W.Z.[Wen-Zhi],
Chen, X.[Xi],
Chen, J.G.[Jia-Ge],
Qu, Y.[Yang],
Sample Generation with Self-Attention Generative Adversarial
Adaptation Network (SaGAAN) for Hyperspectral Image Classification,
RS(12), No. 5, 2020, pp. xx-yy.
DOI Link
2003
BibRef
Xue, Z.X.[Zhi-Xiang],
Semi-supervised convolutional generative adversarial network for
hyperspectral image classification,
IET-IPR(14), No. 4, 27 March 2020, pp. 709-719.
DOI Link
2003
BibRef
Sildir, H.[Hasan],
Aydin, E.[Erdal],
Kavzoglu, T.[Taskin],
Design of Feedforward Neural Networks in the Classification of
Hyperspectral Imagery Using Superstructural Optimization,
RS(12), No. 6, 2020, pp. xx-yy.
DOI Link
2003
BibRef
Li, Z.K.[Zhao-Kui],
Tang, X.Y.[Xiang-Yi],
Li, W.[Wei],
Wang, C.Y.[Chuan-Yun],
Liu, C.[Cuiwei],
He, J.R.[Jin-Rong],
A Two-stage Deep Domain Adaptation Method for Hyperspectral Image
Classification,
RS(12), No. 7, 2020, pp. xx-yy.
DOI Link
2004
BibRef
Song, A.[Ahram],
Kim, Y.I.[Yong-Il],
Transfer Change Rules from Recurrent Fully Convolutional Networks for
Hyperspectral Unmanned Aerial Vehicle Images without Ground Truth
Data,
RS(12), No. 7, 2020, pp. xx-yy.
DOI Link
2004
BibRef
Le Moan, S.[Steven],
Cariou, C.[Claude],
Minimax Bridgeness-Based Clustering for Hyperspectral Data,
RS(12), No. 7, 2020, pp. xx-yy.
DOI Link
2004
BibRef
Li, R.[Rui],
Pan, Z.B.[Zhi-Bin],
Wang, Y.[Yang],
Wang, P.[Ping],
A Convolutional Neural Network with Mapping Layers for Hyperspectral
Image Classification,
GeoRS(58), No. 5, May 2020, pp. 3136-3147.
IEEE DOI
2005
Convolutional neural network (CNN), dimension reduction,
feature extraction, hyperspectral image (HSI) classification, mapping layers
BibRef
Li, J.[Jun],
Lin, D.[Daoyu],
Wang, Y.[Yang],
Xu, G.L.[Guang-Luan],
Zhang, Y.Y.[Yun-Yan],
Ding, C.B.[Chi-Biao],
Zhou, Y.H.[Yan-Hai],
Deep Discriminative Representation Learning with Attention Map for
Scene Classification,
RS(12), No. 9, 2020, pp. xx-yy.
DOI Link
2005
BibRef
Zheng, Z.,
Zhong, Y.,
Ma, A.,
Zhang, L.,
FPGA: Fast Patch-Free Global Learning Framework for Fully End-to-End
Hyperspectral Image Classification,
GeoRS(58), No. 8, August 2020, pp. 5612-5626.
IEEE DOI
2007
Field programmable gate arrays, Decoding, Feature extraction,
Semantics, Training, Hyperspectral imaging, Feature fusion,
patch-free global learning
BibRef
Yang, M.D.[Ming-Der],
Huang, K.H.[Kai-Hsiang],
Tsai, H.P.[Hui-Ping],
Integrating MNF and HHT Transformations into Artificial Neural
Networks for Hyperspectral Image Classification,
RS(12), No. 14, 2020, pp. xx-yy.
DOI Link
2007
BibRef
Masarczyk, W.[Wojciech],
Glomb, P.[Przemyslaw],
Grabowski, B.[Bartosz],
Ostaszewski, M.[Mateusz],
Effective Training of Deep Convolutional Neural Networks for
Hyperspectral Image Classification through Artificial Labeling,
RS(12), No. 16, 2020, pp. xx-yy.
DOI Link
2008
BibRef
Hu, Y.[Yina],
An, R.[Ru],
Wang, B.[Benlin],
Xing, F.[Fei],
Ju, F.[Feng],
Shape Adaptive Neighborhood Information-Based Semi-Supervised
Learning for Hyperspectral Image Classification,
RS(12), No. 18, 2020, pp. xx-yy.
DOI Link
2009
BibRef
Dang, L.X.[Lan-Xue],
Pang, P.D.[Pei-Dong],
Lee, J.[Jay],
Depth-Wise Separable Convolution Neural Network with Residual
Connection for Hyperspectral Image Classification,
RS(12), No. 20, 2020, pp. xx-yy.
DOI Link
2010
BibRef
Dang, L.X.[Lan-Xue],
Pang, P.D.[Pei-Dong],
Zuo, X.Y.[Xian-Yu],
Liu, Y.[Yang],
Lee, J.[Jay],
A Dual-Path Small Convolution Network for Hyperspectral Image
Classification,
RS(13), No. 17, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Rangnekar, A.[Aneesh],
Mokashi, N.[Nilay],
Ientilucci, E.J.[Emmett J.],
Kanan, C.[Christopher],
Hoffman, M.J.[Matthew J.],
AeroRIT: A New Scene for Hyperspectral Image Analysis,
GeoRS(58), No. 11, November 2020, pp. 8116-8124.
IEEE DOI
2011
Hyperspectral imaging, Sensors, Semantics, Automobiles, Training,
Task analysis, hyperspectral imaging, image segmentation, supervised learning
BibRef
Deng, C.[Chubo],
Cen, Y.[Yi],
Zhang, L.[Lifu],
Learning-Based Hyperspectral Imagery Compression through Generative
Neural Networks,
RS(12), No. 21, 2020, pp. xx-yy.
DOI Link
2011
BibRef
Zheng, J.,
Feng, Y.,
Bai, C.,
Zhang, J.,
Hyperspectral Image Classification Using Mixed Convolutions and
Covariance Pooling,
GeoRS(59), No. 1, January 2021, pp. 522-534.
IEEE DOI
2012
Feature extraction, Hyperspectral imaging,
Data mining, Kernel, principal component analysis (PCA)
BibRef
Ma, C.[Chen],
Jiang, J.J.[Jun-Jun],
Li, H.Y.[Hua-Yi],
Mei, X.G.[Xiao-Guang],
Bai, C.C.[Cheng-Chao],
Hyperspectral Image Classification via Spectral Pooling and Hybrid
Transformer,
RS(14), No. 19, 2022, pp. xx-yy.
DOI Link
2210
BibRef
Liang, H.B.[Hong-Bo],
Bao, W.X.[Wen-Xing],
Shen, X.F.[Xiang-Fei],
Adaptive Weighting Feature Fusion Approac Based on Generative
Adversarial Network for Hyperspectral Image Classification,
RS(13), No. 2, 2021, pp. xx-yy.
DOI Link
2101
BibRef
Hang, R.L.[Ren-Long],
Li, Z.[Zhu],
Liu, Q.S.[Qing-Shan],
Ghamisi, P.[Pedram],
Bhattacharyya, S.S.[Shuvra S.],
Hyperspectral Image Classification With Attention-Aided CNNs,
GeoRS(59), No. 3, March 2021, pp. 2281-2293.
IEEE DOI
2103
Feature extraction, Hyperspectral imaging, Adaptation models,
Training, Task analysis, Data mining, Attention modules,
weighted fusion
BibRef
Yan, L.,
Zhao, M.,
Wang, X.,
Zhang, Y.,
Chen, J.,
Object Detection in Hyperspectral Images,
SPLetters(28), 2021, pp. 508-512.
IEEE DOI
2103
Hyperspectral imaging, Feature extraction, Object detection,
Training, Kernel, Task analysis, Spatial resolution,
convolutional neural network
BibRef
Shi, H.[Hao],
Cao, G.[Guo],
Ge, Z.X.[Zi-Xian],
Zhang, Y.Q.[You-Qiang],
Fu, P.[Peng],
Double-Branch Network with Pyramidal Convolution and Iterative
Attention for Hyperspectral Image Classification,
RS(13), No. 7, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Ge, Z.X.[Zi-Xian],
Cao, G.[Guo],
Zhang, Y.Q.[You-Qiang],
Shi, H.[Hao],
Liu, Y.B.[Yan-Bo],
Shafique, A.[Ayesha],
Fu, P.[Peng],
Subpixel Multilevel Scale Feature Learning and Adaptive Attention
Constraint Fusion for Hyperspectral Image Classification,
RS(14), No. 15, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Sun, J.G.[Jin-Guang],
Wang, W.L.[Wan-Li],
Wei, X.[Xian],
Fang, L.[Li],
Tang, X.L.[Xiao-Liang],
Xu, Y.S.[Yu-Sheng],
Yu, H.[Hui],
Yao, W.[Wei],
Deep Clustering With Intraclass Distance Constraint for Hyperspectral
Images,
GeoRS(59), No. 5, May 2021, pp. 4135-4149.
IEEE DOI
2104
Clustering algorithms, Feature extraction, Hyperspectral imaging,
Task analysis, Sensors, Neural networks, Deep learning,
remote sensing
BibRef
Zhai, H.[Han],
Zhang, H.Y.[Hong-Yan],
Zhang, L.P.[Liang-Pei],
Li, P.X.[Ping-Xiang],
Nonlocal Means Regularized Sketched Reweighted Sparse and Low-Rank
Subspace Clustering for Large Hyperspectral Images,
GeoRS(59), No. 5, May 2021, pp. 4164-4178.
IEEE DOI
2104
Dictionaries, Computational modeling, Hyperspectral imaging,
Sparse matrices, Clustering methods, Clustering algorithms,
sparse and low-rank representation (SLRR)
BibRef
Wang, J.J.[Jun-Jie],
Gao, F.[Feng],
Dong, J.Y.[Jun-Yu],
Du, Q.[Qian],
Adaptive DropBlock-Enhanced Generative Adversarial Networks for
Hyperspectral Image Classification,
GeoRS(59), No. 6, June 2021, pp. 5040-5053.
IEEE DOI
2106
Generative adversarial networks, Generators, Training,
Feature extraction, Shape, Hyperspectral sensors,
hyperspectral image (HSI) classification
BibRef
Qing, Y.H.[Yu-Hao],
Liu, W.Y.[Wen-Yi],
Feng, L.Y.[Liu-Yan],
Gao, W.J.[Wan-Jia],
Improved Transformer Net for Hyperspectral Image Classification,
RS(13), No. 11, 2021, pp. xx-yy.
DOI Link
2106
BibRef
Liang, X.J.[Xue-Jian],
Zhang, Y.[Ye],
Zhang, J.P.[Jun-Ping],
Attention Symbiotic Neural Network for Hyperspectral Image Refined
Classification Based on Relative Water Content Retrieval,
GeoRS(59), No. 7, July 2021, pp. 5998-6016.
IEEE DOI
2106
Feature extraction, Machine learning, Data models, Data mining,
Hyperspectral imaging, Biological system modeling,
relative water content retrieval (RWCR)
BibRef
Gong, H.[Hang],
Li, Q.X.[Qiu-Xia],
Li, C.L.[Chun-Lai],
Dai, H.S.[Hai-Shan],
He, Z.P.[Zhi-Ping],
Wang, W.J.[Wen-Jing],
Li, H.Y.[Hao-Yang],
Han, F.[Feng],
Tuniyazi, A.[Abudusalamu],
Mu, T.[Tingkui],
Multiscale Information Fusion for Hyperspectral Image Classification
Based on Hybrid 2D-3D CNN,
RS(13), No. 12, 2021, pp. xx-yy.
DOI Link
2106
BibRef
Diakite, A.[Alou],
Gui, J.S.[Jiang-Sheng],
Fu, X.P.[Xia-Ping],
Hyperspectral image classification using 3D 2D CNN,
IET-IPR(15), No. 5, 2021, pp. 1083-1092.
DOI Link
2106
BibRef
Ahmad, M.[Muhammad],
Mazzara, M.[Manuel],
Distefano, S.[Salvatore],
Regularized CNN Feature Hierarchy for Hyperspectral Image
Classification,
RS(13), No. 12, 2021, pp. xx-yy.
DOI Link
2106
BibRef
Zhang, C.Z.[Chao-Zi],
Wang, J.L.[Jian-Li],
Yao, K.[Kainan],
Global Random Graph Convolution Network for Hyperspectral Image
Classification,
RS(13), No. 12, 2021, pp. xx-yy.
DOI Link
2106
BibRef
Liu, J.[Jing],
Yang, Z.[Zhe],
Liu, Y.[Yi],
Mu, C.H.[Cai-Hong],
Hyperspectral Remote Sensing Images Deep Feature Extraction Based on
Mixed Feature and Convolutional Neural Networks,
RS(13), No. 13, 2021, pp. xx-yy.
DOI Link
2107
BibRef
Liu, J.[Jing],
Li, Y.[Yang],
Zhao, F.[Feng],
Liu, Y.[Yi],
Hyperspectral Remote Sensing Images Feature Extraction Based on
Spectral Fractional Differentiation,
RS(15), No. 11, 2023, pp. 2879.
DOI Link
2306
BibRef
Wei, L.F.[Li-Fei],
Wang, K.[Kun],
Lu, Q.K.[Qi-Kai],
Liang, Y.J.[Ya-Jing],
Li, H.B.[Hai-Bo],
Wang, Z.X.[Zheng-Xiang],
Wang, R.[Run],
Cao, L.Q.[Li-Qin],
Crops Fine Classification in Airborne Hyperspectral Imagery Based on
Multi-Feature Fusion and Deep Learning,
RS(13), No. 15, 2021, pp. xx-yy.
DOI Link
2108
BibRef
Lin, J.Z.[Jian-Zhe],
Mou, L.C.[Li-Chao],
Zhu, X.X.[Xiao Xiang],
Ji, X.Y.[Xiang-Yang],
Wang, Z.J.[Z. Jane],
Attention-Aware Pseudo-3-D Convolutional Neural Network for
Hyperspectral Image Classification,
GeoRS(59), No. 9, September 2021, pp. 7790-7802.
IEEE DOI
2109
Feature extraction, Solid modeling, Pipelines,
Hyperspectral imaging, Convolution, Task analysis, Neural networks,
transfer learning
BibRef
Li, Z.W.[Zhong-Wei],
Zhu, X.[Xue],
Xin, Z.Q.[Zi-Qi],
Guo, F.M.[Fang-Ming],
Cui, X.S.[Xing-Shuai],
Wang, L.Q.[Lei-Quan],
Variational Generative Adversarial Network with Crossed Spatial and
Spectral Interactions for Hyperspectral Image Classification,
RS(13), No. 16, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Ge, Z.X.[Zi-Xian],
Cao, G.[Guo],
Shi, H.[Hao],
Zhang, Y.Q.[You-Qiang],
Li, X.S.[Xue-Song],
Fu, P.[Peng],
Compound Multiscale Weak Dense Network with Hybrid Attention for
Hyperspectral Image Classification,
RS(13), No. 16, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Shi, H.[Hao],
Cao, G.[Guo],
Zhang, Y.Q.[You-Qiang],
Ge, Z.X.[Zi-Xian],
Liu, Y.B.[Yan-Bo],
Fu, P.[Peng],
H2A2Net: A Hybrid Convolution and Hybrid Resolution Network with
Double Attention for Hyperspectral Image Classification,
RS(14), No. 17, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Kong, Y.[Yi],
Wang, X.S.[Xue-Song],
Cheng, Y.[Yuhu],
Chen, C.L.P.[C. L. Philip],
Multi-Stage Convolutional Broad Learning with Block Diagonal
Constraint for Hyperspectral Image Classification,
RS(13), No. 17, 2021, pp. xx-yy.
DOI Link
2109
BibRef
He, X.[Xin],
Chen, Y.S.[Yu-Shi],
Modifications of the Multi-Layer Perceptron for Hyperspectral Image
Classification,
RS(13), No. 17, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Guo, W.H.[Wen-Hui],
Xu, G.X.[Gui-Xun],
Liu, W.F.[Wei-Feng],
Liu, B.D.[Bao-Di],
Wang, Y.J.[Yan-Jiang],
CNN-Combined Graph Residual Network with Multilevel Feature Fusion
for Hyperspectral Image Classification,
IET-CV(15), No. 8, 2021, pp. 592-607.
DOI Link
2110
convolutional neural networks, graph residual network,
hyperspectral image classification, superpixel segmentation
BibRef
Guo, W.H.[Wen-Hui],
Ye, H.L.[Hai-Liang],
Cao, F.L.[Fei-Long],
Feature-Grouped Network With Spectral-Spatial Connected Attention for
Hyperspectral Image Classification,
GeoRS(60), 2022, pp. 1-13.
IEEE DOI
2112
Feature extraction, Deep learning, Data mining,
Principal component analysis, Hyperspectral imaging, Training,
spectral attention
BibRef
Xu, H.L.[Hui-Lin],
Zhang, H.Y.[Hong-Yan],
Zhang, L.P.[Liang-Pei],
A Superpixel Guided Sample Selection Neural Network for Handling
Noisy Labels in Hyperspectral Image Classification,
GeoRS(59), No. 11, November 2021, pp. 9486-9503.
IEEE DOI
2111
Noise measurement, Training, Feature extraction,
Hyperspectral imaging, Task analysis, Support vector machines,
sample selection
BibRef
Xue, Z.H.[Zhao-Hui],
Zhang, M.X.[Meng-Xue],
Liu, Y.F.[Yi-Feng],
Du, P.J.[Pei-Jun],
Attention-Based Second-Order Pooling Network for Hyperspectral Image
Classification,
GeoRS(59), No. 11, November 2021, pp. 9600-9615.
IEEE DOI
2111
Feature extraction, Correlation, Optimization,
Hyperspectral imaging, Structural engineering,
second-order pooling
BibRef
Zhang, Y.X.[Yu-Xiang],
Li, W.[Wei],
Tao, R.[Ran],
Peng, J.T.[Jiang-Tao],
Du, Q.[Qian],
Cai, Z.Q.[Zhao-Quan],
Cross-Scene Hyperspectral Image Classification With Discriminative
Cooperative Alignment,
GeoRS(59), No. 11, November 2021, pp. 9646-9660.
IEEE DOI
2111
Manifolds, Hyperspectral imaging, Support vector machines,
Training, Task analysis, Learning systems, Correlation, Cross-scene,
subspace alignment (SA)
BibRef
Feng, Y.C.[Yu-Chao],
Zheng, J.W.[Jian-Wei],
Qin, M.J.[Meng-Jie],
Bai, C.[Cong],
Zhang, J.L.[Jing-Lin],
3D Octave and 2D Vanilla Mixed Convolutional Neural Network for
Hyperspectral Image Classification with Limited Samples,
RS(13), No. 21, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Paoletti, M.E.[Mercedes E.],
Haut, J.M.[Juan M.],
Pereira, N.S.[Nuno S.],
Plaza, J.[Javier],
Plaza, A.[Antonio],
Ghostnet for Hyperspectral Image Classification,
GeoRS(59), No. 12, December 2021, pp. 10378-10393.
IEEE DOI
2112
Feature extraction, Data models, Computational modeling,
Data mining, Convolution, Hyperspectral imaging,
hyperspectral
BibRef
Qu, Y.[Ying],
Baghbaderani, R.K.[Razieh Kaviani],
Li, W.[Wei],
Gao, L.[Lianru],
Zhang, Y.X.[Yu-Xiang],
Qi, H.R.[Hai-Rong],
Physically Constrained Transfer Learning Through Shared Abundance
Space for Hyperspectral Image Classification,
GeoRS(59), No. 12, December 2021, pp. 10455-10472.
IEEE DOI
2112
Feature extraction, Training, Data mining, Deep learning,
Correlation, Labeling, Hyperspectral imaging, Deep learning,
transfer learning
BibRef
Zhao, J.L.[Jin-Ling],
Hu, L.[Lei],
Dong, Y.Y.[Ying-Ying],
Huang, L.S.[Lin-Sheng],
Hybrid Dense Network with Dual Attention for Hyperspectral Image
Classification,
RS(13), No. 23, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Xi, B.[Bobo],
Li, J.J.[Jiao-Jiao],
Li, Y.S.[Yun-Song],
Song, R.[Rui],
Xiao, Y.C.[Yu-Chao],
Shi, Y.Z.[Yan-Zi],
Du, Q.[Qian],
Multi-Direction Networks With Attentional Spectral Prior for
Hyperspectral Image Classification,
GeoRS(60), 2022, pp. 1-15.
IEEE DOI
2112
Feature extraction, Data mining, Training,
Support vector machines, Hyperspectral imaging, Data models,
multi-direction
BibRef
Yu, C.Y.[Chun-Yan],
Han, R.[Rui],
Song, M.P.[Mei-Ping],
Liu, C.Y.[Cai-Yu],
Chang, C.I.[Chein-I],
Feedback Attention-Based Dense CNN for Hyperspectral Image
Classification,
GeoRS(60), 2022, pp. 1-16.
IEEE DOI
2112
Feature extraction, Training, Hyperspectral imaging,
Data mining, Computational modeling,
spectral feature extraction
BibRef
Xu, Y.M.[Yi-Min],
Li, Z.K.[Zhao-Kui],
Li, W.[Wei],
Du, Q.[Qian],
Liu, C.W.[Cui-Wei],
Fang, Z.Q.[Zhuo-Qun],
Zhai, L.[Lin],
Dual-Channel Residual Network for Hyperspectral Image Classification
With Noisy Labels,
GeoRS(60), 2022, pp. 1-11.
IEEE DOI
2112
Noise measurement, Feature extraction, Training, Robustness,
Deep learning, Task analysis, Noise robustness,
noisy labels
BibRef
Cui, B.[Benlei],
Dong, X.M.[Xue-Mei],
Zhan, Q.Q.[Qiao-Qiao],
Peng, J.T.[Jiang-Tao],
Sun, W.W.[Wei-Wei],
LiteDepthwiseNet: A Lightweight Network for Hyperspectral Image
Classification,
GeoRS(60), 2022, pp. 1-15.
IEEE DOI
2112
Convolution, Standards, Hyperspectral imaging, Training,
Solid modeling, Computational modeling, Data models,
lightweight network
BibRef
Wang, J.[Jue],
Chen, H.[He],
Ma, L.[Long],
Chen, L.[Liang],
Gong, X.D.[Xiao-Dong],
Liu, W.C.[Wen-Chao],
Sphere Loss: Learning Discriminative Features for Scene
Classification in a Hyperspherical Feature Space,
GeoRS(60), 2022, pp. 1-19.
IEEE DOI
2112
Feature extraction, Remote sensing, Measurement, Training,
Task analysis, Deep learning, Sports, Deep learning,
sphere loss
BibRef
Liu, Q.[Qian],
Wu, Z.B.[Ze-Bin],
Jia, X.P.[Xiu-Ping],
Xu, Y.[Yang],
Wei, Z.H.[Zhi-Hui],
From Local to Global: Class Feature Fused Fully Convolutional Network
for Hyperspectral Image Classification,
RS(13), No. 24, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Kumar, V.[Vinod],
Singh, R.S.[Ravi Shankar],
Dua, Y.[Yaman],
Morphologically dilated convolutional neural network for
hyperspectral image classification,
SP:IC(101), 2022, pp. 116549.
Elsevier DOI
2201
Mathematical morphology, Hyperspectral image (HSI),
Dilated convolution, Binarization, Convolutional neural network (CNN)
BibRef
Pande, S.[Shivam],
Banerjee, B.[Biplab],
HyperLoopNet: Hyperspectral image classification using multiscale
self-looping convolutional networks,
PandRS(183), 2022, pp. 422-438.
Elsevier DOI
2201
Hyperspectral images, Image classification,
Convolutional neural networks, Feedback networks
BibRef
Wang, Q.Y.[Qing-Yan],
Chen, M.[Meng],
Zhang, J.P.[Jun-Ping],
Kang, S.Q.[Shou-Qiang],
Wang, Y.J.[Yu-Jing],
Improved Active Deep Learning for Semi-Supervised Classification of
Hyperspectral Image,
RS(14), No. 1, 2022, pp. xx-yy.
DOI Link
2201
BibRef
Praveen, B.[Bishwas],
Menon, V.[Vineetha],
A Bidirectional Deep-Learning-Based Spectral Attention Mechanism for
Hyperspectral Data Classification,
RS(14), No. 1, 2022, pp. xx-yy.
DOI Link
2201
BibRef
Dong, Y.[Yanni],
Liu, Q.W.[Quan-Wei],
Du, B.[Bo],
Zhang, L.P.[Liang-Pei],
Weighted Feature Fusion of Convolutional Neural Network and Graph
Attention Network for Hyperspectral Image Classification,
IP(31), 2022, pp. 1559-1572.
IEEE DOI
2202
Feature extraction, Convolutional neural networks, Training,
Hyperspectral imaging, Data mining, Decoding, Data models,
attention mechanism
BibRef
Wang, J.N.[Jia-Ning],
Huang, R.[Runhu],
Guo, S.Y.[Si-Ying],
Li, L.H.[Lin-Hao],
Pei, Z.[Zhao],
Liu, B.[Bo],
HyperLiteNet: Extremely Lightweight Non-Deep Parallel Network for
Hyperspectral Image Classification,
RS(14), No. 4, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Chang, Y.L.[Yang-Lang],
Tan, T.H.[Tan-Hsu],
Lee, W.H.[Wei-Hong],
Chang, L.[Lena],
Chen, Y.N.[Ying-Nong],
Fan, K.C.[Kuo-Chin],
Alkhaleefah, M.[Mohammad],
Consolidated Convolutional Neural Network for Hyperspectral Image
Classification,
RS(14), No. 7, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Cao, J.M.[Jin-Ming],
Li, Y.Y.[Yang-Yan],
Sun, M.C.[Ming-Chao],
Chen, Y.[Ying],
Lischinski, D.[Dani],
Cohen-Or, D.[Daniel],
Chen, B.Q.[Bao-Quan],
Tu, C.H.[Chang-He],
DO-Conv: Depthwise Over-Parameterized Convolutional Layer,
IP(31), 2022, pp. 3726-3736.
IEEE DOI
2206
Kernel, Convolution, Training, Tensors, Color,
Over-parameterization, depthwise convolution
BibRef
Zhao, C.H.[Chun-Hui],
Zhu, W.X.[Wen-Xiang],
Feng, S.[Shou],
Superpixel Guided Deformable Convolution Network for Hyperspectral
Image Classification,
IP(31), 2022, pp. 3838-3851.
IEEE DOI
2206
Feature extraction, Convolution, Hyperspectral imaging,
Data mining, Shape, Kernel, Deep learning,
bilateral filter
BibRef
Tang, H.J.[Hao-Jin],
Li, Y.S.[Yan-Shan],
Huang, Z.Q.[Zhi-Quan],
Zhang, L.[Li],
Xie, W.X.[Wei-Xin],
Fusion of Multidimensional CNN and Handcrafted Features for
Small-Sample Hyperspectral Image Classification,
RS(14), No. 15, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Zhang, T.X.[Tian-Xiang],
Wang, W.X.[Wen-Xuan],
Wang, J.[Jing],
Cai, Y.X.[Yuan-Xiu],
Yang, Z.F.[Zhi-Fang],
Li, J.Y.[Jiang-Yun],
Hyper-LGNet: Coupling Local and Global Features for Hyperspectral
Image Classification,
RS(14), No. 20, 2022, pp. xx-yy.
DOI Link
2211
BibRef
Huang, W.[Wei],
Zhao, Z.B.[Zhuo-Bing],
Sun, L.[Le],
Ju, M.[Ming],
Dual-Branch Attention-Assisted CNN for Hyperspectral Image
Classification,
RS(14), No. 23, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Alkhatib, M.Q.[Mohammed Q.],
Al-Saad, M.[Mina],
Aburaed, N.[Nour],
Almansoori, S.[Saeed],
Zabalza, J.[Jaime],
Marshall, S.[Stephen],
Al-Ahmad, H.[Hussain],
Tri-CNN: A Three Branch Model for Hyperspectral Image Classification,
RS(15), No. 2, 2023, pp. xx-yy.
DOI Link
2301
BibRef
Di, X.[Xiyao],
Xue, Z.H.[Zhao-Hui],
Zhang, M.X.[Meng-Xue],
Active Learning-Driven Siamese Network for Hyperspectral Image
Classification,
RS(15), No. 3, 2023, pp. xx-yy.
DOI Link
2302
BibRef
Li, B.[Bing],
Wang, Q.W.[Qi-Wen],
Liang, J.H.[Jia-Hong],
Zhu, E.Z.[En-Ze],
Zhou, R.Q.[Rong-Qian],
SquconvNet: Deep Sequencer Convolutional Network for Hyperspectral
Image Classification,
RS(15), No. 4, 2023, pp. xx-yy.
DOI Link
2303
BibRef
Liu, Q.Y.[Qiu-Yue],
Fu, M.[Min],
Liu, X.F.[Xue-Feng],
Shadow Enhancement Using 2D Dynamic Stochastic Resonance for
Hyperspectral Image Classification,
RS(15), No. 7, 2023, pp. 1820.
DOI Link
2304
BibRef
Liu, Q.Y.[Qiu-Yue],
Liu, X.F.[Xue-Feng],
Zhang, S.[Shan],
Fu, M.[Min],
Hyperspectral Image Classification Based on Convolutional Neural
Network Embedded with Attention Mechanism and Shadow Enhancement by
Dynamic Stochastic Resonance,
ICIVC22(455-461)
IEEE DOI
2301
Deep learning, Solid modeling, Stochastic resonance,
Feature extraction, Sensors, Convolutional neural networks, 3D CNN, DSR
BibRef
Zhang, E.[Erlei],
Zhang, J.Y.[Jia-Yi],
Bai, J.X.[Jia-Xin],
Bian, J.[Jiarong],
Fang, S.[Shaoyi],
Zhan, T.[Tao],
Feng, M.C.[Ming-Chen],
Attention-Embedded Triple-Fusion Branch CNN for Hyperspectral Image
Classification,
RS(15), No. 8, 2023, pp. 2150.
DOI Link
2305
BibRef
Wang, D.[Di],
Zhang, J.[Jing],
Du, B.[Bo],
Zhang, L.P.[Liang-Pei],
Tao, D.C.[Da-Cheng],
DCN-T: Dual Context Network With Transformer for Hyperspectral Image
Classification,
IP(32), 2023, pp. 2536-2551.
IEEE DOI
2305
Feature extraction, Transformers, Image segmentation, Pipelines,
Task analysis, Dimensionality reduction, Semantics,
context capturing
BibRef
Gong, Z.Q.[Zhi-Qiang],
Zhong, P.[Ping],
Yao, W.[Wen],
Zhou, W.[Weien],
Qi, J.H.[Jia-Hao],
Hu, P.[Panhe],
A CNN with noise inclined module and denoise framework for
hyperspectral image classification,
IET-IPR(17), No. 9, 2023, pp. 2575-2584.
DOI Link
2307
convolutional neural networks (CNNs), denoise framework,
diversity, hyperspectral image classification, noise inclined module
BibRef
Dahiya, N.[Neelam],
Singh, S.[Sartajvir],
Gupta, S.[Sheifali],
A Review on Deep Learning Classifier for Hyperspectral Imaging,
IJIG(23), No. 4 2023, pp. 2350036.
DOI Link
2308
Survey, Deep Learning.
BibRef
Feng, H.[Hao],
Wang, Y.C.[Yong-Cheng],
Li, Z.[Zheng],
Zhang, N.[Ning],
Zhang, Y.X.[Yu-Xi],
Gao, Y.[Yunxiao],
Information Leakage in Deep Learning-Based Hyperspectral Image
Classification: A Survey,
RS(15), No. 15, 2023, pp. xx-yy.
DOI Link
2308
BibRef
Wang, Z.H.[Zhi-Hui],
Cao, B.S.[Bai-Song],
Liu, J.[Jun],
Hyperspectral Image Classification via Spatial Shuffle-Based
Convolutional Neural Network,
RS(15), No. 16, 2023, pp. 3960.
DOI Link
2309
BibRef
Zhong, C.C.[Cheng-Cheng],
Gong, N.[Na],
Zhang, Z.T.[Zi-Tong],
Jiang, Y.[Yanan],
Zhang, K.[Kai],
LiteCCLKNet: A lightweight criss-cross large kernel convolutional
neural network for hyperspectral image classification,
IET-CV(17), No. 7, 2023, pp. 763-776.
DOI Link
2310
criss-cross convolution, hyperspectral image classification,
large kernel, lightweight network
BibRef
Xu, T.[Tuo],
Han, B.[Bing],
Li, J.[Jie],
Du, Y.F.[Yue-Fan],
Domain-Invariant Feature and Generative Adversarial Network Boundary
Enhancement for Multi-Source Unsupervised Hyperspectral Image
Classification,
RS(15), No. 22, 2023, pp. 5306.
DOI Link
2311
BibRef
Ashraf, M.[Mahmood],
Zhou, X.C.[Xi-Chuan],
Vivone, G.[Gemine],
Chen, L.H.[Li-Hui],
Chen, R.[Rong],
Majdard, R.S.[Reza Seifi],
Spatial-Spectral BERT for Hyperspectral Image Classification,
RS(16), No. 3, 2024, pp. 539.
DOI Link
2402
BibRef
Wang, C.Z.[Chuan-Zhi],
Huang, J.[Jun],
Lv, M.Y.[Ming-Yun],
Wu, Y.M.[Yong-Mei],
Qin, R.[Ruiru],
Dual-Branch Adaptive Convolutional Transformer for Hyperspectral
Image Classification,
RS(16), No. 9, 2024, pp. 1615.
DOI Link
2405
BibRef
Chen, Y.[Yuyi],
Wang, X.P.[Xiao-Peng],
Zhang, J.H.[Jia-Hua],
Shang, X.D.[Xiao-Di],
Hu, Y.[Yabin],
Zhang, S.C.[Shi-Chao],
Wang, J.J.[Jia-Jie],
A New Dual-Branch Embedded Multivariate Attention Network for
Hyperspectral Remote Sensing Classification,
RS(16), No. 11, 2024, pp. 2029.
DOI Link
2406
BibRef
Zhang, H.[Heng],
Liu, H.H.[Han-Hu],
Yang, R.H.[Rong-Hao],
Wang, W.[Wei],
Luo, Q.Q.[Qing-Qu],
Tu, C.D.[Chang-Da],
Hyperspectral Image Classification Based on Double-Branch Multi-Scale
Dual-Attention Network,
RS(16), No. 12, 2024, pp. 2051.
DOI Link
2406
BibRef
Islam, M.R.[Md. Rashedul],
Islam, M.T.[Md. Touhid],
Uddin, M.P.[Md Palash],
Ulhaq, A.[Anwaar],
Improving Hyperspectral Image Classification with Compact
Multi-Branch Deep Learning,
RS(16), No. 12, 2024, pp. 2069.
DOI Link
2406
BibRef
Sun, Q.[Qian],
Zhao, G.R.[Guang-Rui],
Xia, X.Y.[Xin-Yuan],
Xie, Y.[Yu],
Fang, C.R.[Chen-Rong],
Sun, L.[Le],
Wu, Z.B.[Ze-Bin],
Pan, C.S.[Cheng-Sheng],
Hyperspectral Image Classification Based on Multi-Scale Convolutional
Features and Multi-Attention Mechanisms,
RS(16), No. 12, 2024, pp. 2185.
DOI Link
2406
BibRef
Zhu, X.H.[Xing-Hui],
Li, K.R.[Kai-Run],
Deng, Y.J.[Yang-Jun],
Long, C.F.[Chen-Feng],
Wang, W.Y.[Wei-Ye],
Tan, S.Q.[Si-Qiao],
Center-Highlighted Multiscale CNN for Classification of Hyperspectral
Images,
RS(16), No. 21, 2024, pp. 4055.
DOI Link
2411
BibRef
Tang, X.B.[Xue-Bin],
Zhang, K.[Ke],
Zhou, X.L.[Xiao-Lei],
Zeng, L.[Lingbin],
Huang, S.[Shan],
Enhancing Binary Convolutional Neural Networks for Hyperspectral
Image Classification,
RS(16), No. 23, 2024, pp. 4398.
DOI Link
2501
BibRef
Teffahi, H.,
Teffahi, N.,
EMAP-DCNN: A Novel Mathematical Morphology and Deep Learning Combined
Framework for Hyperspectral Image Classification,
ISPRS20(B3:479-486).
DOI Link
2012
BibRef
Buehler, C.,
Schenkel, F.,
Gross, W.,
Schaab, G.,
Middelmann, W.,
Strategic Optimization of Convolutional Neural Networks For
Hyperspectral Land Cover Classification,
ISPRS20(B3:363-369).
DOI Link
2012
BibRef
Voulodimos, A.,
Fokeas, K.,
Doulamis, N.,
Doulamis, A.,
Makantasis, K.,
Noise-tolerant Hyperspectral Image Classification Using Discrete Cosine
Transform and Convolutional Neural Networks,
ISPRS20(B2:1281-1287).
DOI Link
2012
BibRef
Hosseiny, B.,
Rastiveis, H.,
Daneshtalab, S.,
Hyperspectral Image Classification By Exploiting Convolutional Neural
Networks,
SMPR19(535-540).
DOI Link
1912
BibRef
Le, J.H.[Justin H.],
Yazdanpanah, A.P.[Ali Pour],
Regentova, E.E.[Emma E.],
Muthukumar, V.[Venkatesan],
A Deep Belief Network for Classifying Remotely-Sensed Hyperspectral
Data,
ISVC15(I: 682-692).
Springer DOI
1601
BibRef
Li, T.[Tong],
Zhang, J.P.[Jun-Ping],
Zhang, Y.[Ye],
Classification of hyperspectral image based on deep belief networks,
ICIP14(5132-5136)
IEEE DOI
1502
Accuracy
BibRef
Muhammed, H.H.,
Unsupervised hyperspectral image segmentation using a new class of
neuro-fuzzy systems based on weighted incremental neural networks,
AIPR02(171-177).
IEEE DOI
0210
BibRef
And:
Using hyperspectral reflectance data for discrimination between healthy
and diseased plants, and determination of damage-level in diseased
plants,
AIPR02(49-54).
IEEE DOI
0210
BibRef
Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
Spectral-Spatial Classification, Spatial-Spectral, Hyperspectral Data .