Pauwels, E.J.,
Moons, T.,
Van Gool, L.J.,
Kempenaers, P.,
Oosterlinck, A.,
Recognition Of Planar Shapes Under Affine Distortion,
IJCV(14), No. 1, January 1995, pp. 49-65.
Springer DOI
See also Foundations Of Semi-Differential Invariants.
BibRef
9501
Van Gool, L.J.,
Moons, T.,
Ungureanu, D.,
Oosterlinck, A.,
The Characterization and Detection of Skewed Symmetry,
CVIU(61), No. 1, January 1995, pp. 138-150.
DOI Link
BibRef
9501
Kempenaers, P.,
Van Gool, L.J., and
Oosterlinck, A.,
Shape Recognition under Affine Distortions,
VF91(323-332).
Matching, Invariants.
BibRef
9100
Wagemans, J.[Johan],
Detection of visual symmetries,
SV(9), No. 9, 1995, pp. xx-yy.
BibRef
9500
Van Gool, L.J.,
Wagemans, J.,
Vandeneede, J.,
Oosterlinck, A.,
Similarity Extraction and Modelling,
ICCV90(530-534).
IEEE DOI
BibRef
9000
Adler, S.L.[Stephen L.],
Krishnan, R.[Ranganathan],
Similarity and Affine Normalization of Partially Occluded Planar Curves
Using First and 2nd Derivatives,
PR(31), No. 10, October 1998, pp. 1551-1556.
Elsevier DOI
9808
BibRef
Kenney, C.S.[Charles S.],
Manjunath, B.S.,
Zuliani, M.[Marco],
Hewer, G.A.[Gary A.],
van Nevel, A.[Alan],
A condition number for point matching with application to registration
and postregistration error estimation,
PAMI(25), No. 11, November 2003, pp. 1437-1454.
IEEE Abstract.
0311
To select tie points to use in matching.
Condition number to minimize functions for translation, rotation-scaling and
affine transformations.
Test is how well the points work in matching operations.
BibRef
Zuliani, M.,
Bhagavathy, S.,
Manjunath, B.S.,
Kenney, C.S.,
Affine-invariant curve matching,
ICIP04(V: 3041-3044).
IEEE DOI
0505
BibRef
Zuliani, M.,
Kenney, C.S.,
Manjunath, B.S.,
A Mathematical Comparison of Point Detectors,
VideoRegister04(172).
IEEE DOI
0502
BibRef
Zhang, P.P.,
Qiao, Y.,
Wang, S.Z.,
Yang, J.,
Reference-omitted affine soft correspondence algorithm,
IET-IPR(10), No. 8, 2016, pp. 571-581.
DOI Link
1608
image matching
BibRef
Rodríguez, M.[Mariano],
Delon, J.[Julie],
Morel, J.M.[Jean-Michel],
Covering the Space of Tilts. Application to Affine Invariant Image
Comparison,
SIIMS(11), No. 2, 2018, pp. 1230-1267.
DOI Link
1807
Analyze affine matching.
BibRef
Rodríguez, M.[Mariano],
Delon, J.[Julie],
Morel, J.M.[Jean-Michel],
Fast Affine Invariant Image Matching,
IPOL(8), 2018, pp. 251-281.
DOI Link
1810
Code, Image Matching.
See also Covering the Space of Tilts. Application to Affine Invariant Image Comparison.
BibRef
Guan, B.L.[Bang-Lei],
Zhao, J.[Ji],
Li, Z.[Zhang],
Sun, F.[Fang],
Fraundorfer, F.[Friedrich],
Relative Pose Estimation with a Single Affine Correspondence,
Cyber(52), No. 10, October 2022, pp. 10111-10122.
IEEE DOI
2209
BibRef
Earlier:
Minimal Solutions for Relative Pose With a Single Affine
Correspondence,
CVPR20(1926-1935)
IEEE DOI
2008
Cameras, Pose estimation, Transmission line matrix methods,
Simultaneous localization and mapping, Motion estimation,
visual odometry (VO).
Robot vision systems
BibRef
Guan, B.L.[Bang-Lei],
Zhao, J.[Ji],
Affine Correspondences Between Multi-Camera Systems for 6DOF Relative
Pose Estimation,
ECCV22(XXXII:634-650).
Springer DOI
2211
BibRef
Guan, B.L.[Bang-Lei],
Zhao, J.[Ji],
Barath, D.[Daniel],
Fraundorfer, F.[Friedrich],
Minimal Solvers for Relative Pose Estimation of Multi-Camera Systems
using Affine Correspondences,
IJCV(131), No. 1, January 2023, pp. 324-345.
Springer DOI
2301
BibRef
Earlier:
Minimal Cases for Computing the Generalized Relative Pose using
Affine Correspondences,
ICCV21(6048-6057)
IEEE DOI
2203
Motion estimation, Computational modeling, Pose estimation,
Benchmark testing, Cameras, Image sequences, Stereo,
Vision for robotics and autonomous vehicles
BibRef
Rodríguez, M.[Mariano],
Facciolo, G.[Gabriele],
Morel, J.M.[Jean-Michel],
Robust Homography Estimation from Local Affine Maps,
IPOL(13), 2023, pp. 65-89.
DOI Link
2303
BibRef
Rodríguez, M.[Mariano],
Facciolo, G.[Gabriele],
von Gioi, R.G.[R. Grompone],
Musé, P.,
Delon, J.,
Morel, J.M.,
CNN-Assisted Coverings in the Space of Tilts:
Best Affine Invariant Performances with the Speed of CNNs,
ICIP20(2201-2205)
IEEE DOI
2011
Code, Affine Invariant.
WWW Link. Cameras, Adaptation models, Image matching, Mathematical model,
Estimation, Optical imaging, Distortion, image comparison,
convolutional neural networks
BibRef
Rodríguez, M.[Mariano],
Facciolo, G.[Gabriele],
von Gioi, R.G.[R. Grompone],
Musé, P.,
Delon, J.,
Robust estimation of local affine maps and its applications to image
matching,
WACV20(1331-1340)
IEEE DOI
2006
Transforms, Cameras, Estimation, Detectors, Training, Image matching,
Optical imaging
BibRef
Kim, J.,
Yu, K.,
Areal Feature Matching Based on Similarity Using Critic Method,
GeoInfo15(75-78).
DOI Link
1602
Matching a simple entity with an aggregate of several polygons or two
aggregates of several polygons. Based on building name being the same.
Overlay, intersect.
BibRef
Tanacs, A.,
Majdik, A.,
Molnar, J.,
Rai, A.,
Kato, Z.,
Establishing Correspondences between Planar Image Patches,
DICTA14(1-7)
IEEE DOI
1502
computer vision
BibRef
Heikkila, J.,
Statistical method for object alignment under affine transformation,
CIAP03(360-365).
IEEE DOI
0310
BibRef
Frydrychowicz, S.,
A New Approach to Affine Transform Invariant Shape Matching,
VF91(267-274).
Decompose the shape into sections and
match the sections of the contour (lobes, etc.).
BibRef
9112
Hummel, R.A., and
Wolfson, H.J.,
Affine Invariant Matching,
DARPA88(351-364).
BibRef
8800
Bachelder, I.A.[Ivan A.], and
Ullman, S.,
Contour Matching Using Local Affine Transformations,
CVPR92(798-801).
IEEE DOI
BibRef
9200
And:
DARPA92(299-310).
BibRef
And: A1 only:
MIT AI Memo-1326, April 1992.
Computes a point to point contour match.
WWW Link.
BibRef
Baird, H.S.,
Model-Based Image Matching Using Location,
Cambridge:
MIT Press1985.
Matching features to convex regions leads to linear constraints of the
set of possible transformations.
BibRef
8500
Chapter on Registration, Matching and Recognition Using Points, Lines, Regions, Areas, Surfaces continues in
Region/Contour Matching, Accumulation Based .