Eghbali, H.J.,
K-S Test for Detecting Changes from Landsat Imagery Data,
SMC(9), No. 1, 1979, pp. 17-23.
BibRef
7900
Song, C.H.[Cong-He],
Woodcock, C.E.[Curtis E.],
Seto, K.C.[Karen C.],
Lenney, M.P.[Mary Pax],
Macomber, S.A.[Scott A.],
Classification and Change Detection Using Landsat TM Data. When and How
to Correct Atmospheric Effects?,
RSE(75), No. 2, 2001, pp. 230-244.
0102
BibRef
Rogan, J.[John],
Miller, J.[Jennifer],
Stow, D.[Doug],
Franklin, J.[Janet],
Levien, L.[Lisa],
Fischer, C.[Chris],
Land-Cover Change Monitoring with Classification Trees Using Landsat TM
and Ancillary Data,
PhEngRS(69), No. 7, July 2003, pp. 793-804.
WWW Link.
0307
Overall accuracies of the land-cover change maps ranged between 72
percent and 92 percent, with ancillary variables playing an important
discriminatory role in the most detailed level of land-cover change.
BibRef
Matejicek, L.,
Kopackova, V.,
Changes in Croplands as a Result of Large Scale Mining and the
Associated Impact on Food Security Studied Using Time-Series Landsat
Images,
RS(2), No. 6, June 2010, pp. 1463-1480.
DOI Link
1203
BibRef
Mitchell, J.J.[Jessica J.],
Shrestha, R.[Rupesh],
Moore-Ellison, C.A.[Carol A.],
Glenn, N.F.[Nancy F.],
Single and Multi-Date Landsat Classifications of Basalt to Support
Soil Survey Efforts,
RS(5), No. 10, 2013, pp. 4857-4876.
DOI Link
1311
BibRef
Brooks, E.B.,
Wynne, R.H.,
Thomas, V.A.,
Blinn, C.E.,
Coulston, J.W.,
On-the-Fly Massively Multitemporal Change Detection Using Statistical
Quality Control Charts and Landsat Data,
GeoRS(52), No. 6, June 2014, pp. 3316-3332.
IEEE DOI
1403
Control charts
BibRef
Li, Q.T.[Qing-Ting],
Wang, C.Z.[Cui-Zhen],
Zhang, B.[Bing],
Lu, L.L.[Lin-Lin],
Object-Based Crop Classification with Landsat-MODIS Enhanced
Time-Series Data,
RS(7), No. 12, 2015, pp. 15820.
DOI Link
1601
BibRef
Mandanici, E.[Emanuele],
Bitelli, G.[Gabriele],
Multi-Image and Multi-Sensor Change Detection for Long-Term
Monitoring of Arid Environments With Landsat Series,
RS(7), No. 10, 2015, pp. 14019.
DOI Link
1511
BibRef
Wang, C.Z.[Cui-Zhen],
Fan, Q.[Qian],
Li, Q.T.[Qing-Ting],
Soo Hoo, W.M.[William M.],
Lu, L.L.[Lin-Lin],
Energy crop mapping with enhanced TM/MODIS time series in the BCAP
agricultural lands,
PandRS(124), No. 1, 2017, pp. 133-143.
Elsevier DOI
1702
BCAP
BibRef
Schmidt, M.[Michael],
Pringle, M.[Matthew],
Devadas, R.[Rakhesh],
Denham, R.[Robert],
Tindall, D.[Dan],
A Framework for Large-Area Mapping of Past and Present Cropping
Activity Using Seasonal Landsat Images and Time Series Metrics,
RS(8), No. 4, 2016, pp. 312.
DOI Link
1604
BibRef
Dannenberg, M.P.[Matthew P.],
Hakkenberg, C.R.[Christopher R.],
Song, C.H.[Cong-He],
Consistent Classification of Landsat Time Series with an Improved
Automatic Adaptive Signature Generalization Algorithm,
RS(8), No. 8, 2016, pp. 691.
DOI Link
1609
Classification at frequent intervals.
BibRef
Shahtahmassebi, A.R.[Amir Reza],
Lin, Y.[Yue],
Lin, L.[Lin],
Atkinson, P.M.[Peter M.],
Moore, N.[Nathan],
Wang, K.[Ke],
He, S.[Shan],
Huang, L.Y.[Ling-Yan],
Wu, J.[Jiexia],
Shen, Z.Q.[Zhang-Quan],
Gan, M.[Muye],
Zheng, X.Y.[Xin-Yu],
Su, Y.[Yue],
Teng, H.F.[Hong-Fen],
Li, X.Y.[Xiao-Yan],
Deng, J.S.[Jin-Song],
Sun, Y.Y.[Yuan-Yuan],
Zhao, M.Z.[Meng-Zhu],
Reconstructing Historical Land Cover Type and Complexity by
Synergistic Use of Landsat Multispectral Scanner and CORONA,
RS(9), No. 7, 2017, pp. xx-yy.
DOI Link
1708
BibRef
Zhu, Z.[Zhe],
Change Detection Using Landsat Time Series:
A review of frequencies, preprocessing, algorithms, and applications,
PandRS(130), No. 1, 2017, pp. 370-384.
Elsevier DOI
1708
Review
BibRef
Diek, S.[Sanne],
Fornallaz, F.[Fabio],
Schaepman, M.E.[Michael E.],
de Jong, R.[Rogier],
Barest Pixel Composite for Agricultural Areas Using Landsat Time
Series,
RS(9), No. 12, 2017, pp. xx-yy.
DOI Link
1802
BibRef
Gupta, N.[Neha],
Pillai, G.V.[Gargi V.],
Ari, S.[Samit],
Change detection in Landsat images based on local neighbourhood
information,
IET-IPR(12), No. 11, November 2018, pp. 2051-2058.
DOI Link
1810
BibRef
Karakizi, C.[Christina],
Karantzalos, K.[Konstantinos],
Vakalopoulou, M.[Maria],
Antoniou, G.[Georgia],
Detailed Land Cover Mapping from Multitemporal Landsat-8 Data of
Different Cloud Cover,
RS(10), No. 8, 2018, pp. xx-yy.
DOI Link
1809
BibRef
Song, M.[Mi],
Zhong, Y.F.[Yan-Fei],
Ma, A.L.[Ai-Long],
Change Detection Based on Multi-Feature Clustering Using Differential
Evolution for Landsat Imagery,
RS(10), No. 10, 2018, pp. xx-yy.
DOI Link
1811
BibRef
Xie, S.[Shuai],
Liu, L.Y.[Liang-Yun],
Zhang, X.[Xiao],
Yang, J.N.[Jiang-Ning],
Chen, X.D.[Xi-Dong],
Gao, Y.[Yuan],
Automatic Land-Cover Mapping using Landsat Time-Series Data Based
on Google Earth Engine,
RS(11), No. 24, 2019, pp. xx-yy.
DOI Link
1912
BibRef
Martín-Ortega, P.[Pablo],
García-Montero, L.G.[Luis Gonzaga],
Sibelet, N.[Nicole],
Temporal Patterns in Illumination Conditions and Its Effect on
Vegetation Indices Using Landsat on Google Earth Engine,
RS(12), No. 2, 2020, pp. xx-yy.
DOI Link
2001
BibRef
Li, J.Y.[Jia-Yi],
Huang, X.[Xin],
Chang, X.Y.[Xiao-Yu],
A label-noise robust active learning sample collection method for
multi-temporal urban land-cover classification and change analysis,
PandRS(163), 2020, pp. 1-17.
Elsevier DOI
2005
Machine learning, Multi-temporal change detection,
Landsat satellite imagery, Automatic sample collection
BibRef
Bright, B.C.[Benjamin C.],
Hudak, A.T.[Andrew T.],
Meddens, A.J.H.[Arjan J.H.],
Egan, J.M.[Joel M.],
Jorgensen, C.L.[Carl L.],
Mapping Multiple Insect Outbreaks across Large Regions Annually Using
Landsat Time Series Data,
RS(12), No. 10, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Meroni, M.,
Schucknecht, A.,
Fasbender, D.,
Rembold, F.,
Fava, F.,
Mauclaire, M.,
Goffner, D.,
di Lucchio, L.M.,
Leonardi, U.,
Remote sensing monitoring of land restoration interventions in
semi-arid environments using a before-after control-impact
statistical design,
MultiTemp17(1-4)
IEEE DOI
1712
statistical analysis, vegetation mapping, Great Green Wall,
Landsat mission, Moderate Resolution Imaging Spectroradiometer,
restoration interventions
BibRef
Sun, J.[Jing],
Ongsomwang, S.[Suwit],
Multitemporal Land Use and Land Cover Classification from Time-Series
Landsat Datasets Using Harmonic Analysis with a Minimum Spectral
Distance Algorithm,
IJGI(9), No. 2, 2020, pp. xx-yy.
DOI Link
2003
BibRef
Hemati, M.[Mohammad_Ali],
Hasanlou, M.[Mahdi],
Mahdianpari, M.[Masoud],
Mohammadimanesh, F.[Fariba],
A Systematic Review of Landsat Data for Change Detection
Applications: 50 Years of Monitoring the Earth,
RS(13), No. 15, 2021, pp. xx-yy.
DOI Link
2108
Survey, Landsat Change Detection.
BibRef
Aghababaei, M.[Masoumeh],
Ebrahimi, A.[Ataollah],
Naghipour, A.A.[Ali Asghar],
Asadi, E.[Esmaeil],
Verrelst, J.[Jochem],
Vegetation Types Mapping Using Multi-Temporal Landsat Images in the
Google Earth Engine Platform,
RS(13), No. 22, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Zhao, F.[Fen],
Xia, L.[Lang],
Kylling, A.[Arve],
Shang, H.[Hua],
Yang, P.[Peng],
Mapping global flying aircraft activities using Landsat 8 and cloud
computing,
PandRS(184), 2022, pp. 19-30.
Elsevier DOI
2202
Flying aircraft detection, Landsat 8, 1.38 µm, Cloud computing,
Global aviation, COVID-19
BibRef
Guo, Y.T.[Yan-Tao],
Long, T.F.[Teng-Fei],
Jiao, W.[Weili],
Zhang, X.M.[Xiao-Mei],
He, G.J.[Guo-Jin],
Wang, W.[Wei],
Peng, Y.[Yan],
Xiao, H.[Han],
Siamese Detail Difference and Self-Inverse Network for Forest Cover
Change Extraction Based on Landsat 8 OLI Satellite Images,
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Zhang, Y.Z.[Yu-Zhen],
Liu, J.D.[Jin-Dong],
Liang, S.L.[Shun-Lin],
Li, M.[Manyao],
A New Spatial-Temporal Depthwise Separable Convolutional Fusion
Network for Generating Landsat 8-Day Surface Reflectance Time Series
over Forest Regions,
RS(14), No. 9, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Graesser, J.[Jordan],
Stanimirova, R.[Radost],
Tarrio, K.[Katelyn],
Copati, E.J.[Esteban J.],
Volante, J.N.[José N.],
Verón, S.R.[Santiago R.],
Banchero, S.[Santiago],
Elena, H.[Hernan],
de Abelleyra, D.[Diego],
Friedl, M.A.[Mark A.],
Temporally-Consistent Annual Land Cover from Landsat Time Series in
the Southern Cone of South America,
RS(14), No. 16, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Li, J.Z.[Jian-Zhou],
Ma, J.J.[Jin-Ji],
Ye, X.J.[Xiao-Jiao],
A Batch Pixel-Based Algorithm to Composite Landsat Time Series Images,
RS(14), No. 17, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Sun, X.Y.[Xiao-Yu],
Li, G.Y.[Gui-Ying],
Wu, Q.Q.[Qin-Quan],
Li, D.Q.[Deng-Qiu],
Lu, D.S.[Deng-Sheng],
Examining the Effects of Soil and Water Conservation Measures on
Patterns and Magnitudes of Vegetation Cover Change in a Subtropical
Region Using Time Series Landsat Imagery,
RS(16), No. 4, 2024, pp. 714.
DOI Link
2402
BibRef
Rasi, R.[Rastislav],
Kissiyar, O.[Ouns],
Vollmar, M.[Michael],
Land cover change detection thresholds for Landsat data samples,
MultiTemp11(205-208).
IEEE DOI
1109
BibRef
Chapter on Remote Sensing General Issue, Land Use, Land Cover continues in
NDVI, Normalized Difference Vegetation Index, Changes .