Achille, A.[Alessandro],
Soatto, S.[Stefano],
Information Dropout: Learning Optimal Representations Through Noisy
Computation,
PAMI(40), No. 12, December 2018, pp. 2897-2905.
IEEE DOI
1811
Neural networks, Deep learning, Bayes methods, Machine learning,
Information theory, Noise measurement, Learning systems,
minimality
BibRef
Ding, G.G.[Gui-Guang],
Guo, Y.C.[Yu-Chen],
Chen, K.[Kai],
Chu, C.Q.[Chao-Qun],
Han, J.G.[Jun-Gong],
Dai, Q.G.[Qion-Ghai],
DECODE: Deep Confidence Network for Robust Image Classification,
IP(28), No. 8, August 2019, pp. 3752-3765.
IEEE DOI
1907
convolutional neural nets, data visualisation,
image classification, image denoising, confidence model
BibRef
Amjad, R.A.[Rana Ali],
Geiger, B.C.[Bernhard C.],
Learning Representations for Neural Network-Based Classification
Using the Information Bottleneck Principle,
PAMI(42), No. 9, September 2020, pp. 2225-2239.
IEEE DOI
2008
Training, Task analysis, Robustness, Cost function, Neurons,
Neural networks, Deep learning, information bottleneck,
stochastic neural networks
BibRef
Pretorius, A.[Arnu],
Kamper, H.[Herman],
Kroon, S.[Steve],
On the expected behaviour of noise regularised deep neural networks
as Gaussian processes,
PRL(138), 2020, pp. 75-81.
Elsevier DOI
2010
Neural networks, Gaussian processes, Signal propagation, Noise regularisation
BibRef
Liu, R.[Rui],
Liu, Y.[Yi],
Wang, R.[Rui],
Zhou, Y.C.[Yu-Cong],
Mutual calibration training: Training deep neural networks with noisy
labels using dual-models,
CVIU(212), 2021, pp. 103277.
Elsevier DOI
2110
Image classification, Deep neural networks, Weak supervisor
BibRef
Yan, Z.[Ziang],
Guo, Y.W.[Yi-Wen],
Zhang, C.S.[Chang-Shui],
Adversarial Margin Maximization Networks,
PAMI(43), No. 4, April 2021, pp. 1129-1139.
IEEE DOI
2103
Perturbation methods, Training, Support vector machines,
Distortion, Radio frequency, Robustness, Neural networks,
deep neural networks
BibRef
Li, S.[Shuai],
Jia, K.[Kui],
Wen, Y.X.[Yu-Xin],
Liu, T.L.[Tong-Liang],
Tao, D.C.[Da-Cheng],
Orthogonal Deep Neural Networks,
PAMI(43), No. 4, April 2021, pp. 1352-1368.
IEEE DOI
2103
Training, Robustness, Jacobian matrices, Task analysis,
Neural networks, Optimization, Deep learning, Deep neural networks,
image classification
BibRef
Kortylewski, A.[Adam],
Liu, Q.[Qing],
Wang, A.T.[Ang-Tian],
Sun, Y.H.[Yi-Hong],
Yuille, A.L.[Alan L.],
Compositional Convolutional Neural Networks:
A Robust and Interpretable Model for Object Recognition Under Occlusion,
IJCV(129), No. 3, March 2021, pp. 736-760.
Springer DOI
2103
BibRef
Kortylewski, A.,
He, J.,
Liu, Q.,
Yuille, A.L.,
Compositional Convolutional Neural Networks:
A Deep Architecture With Innate Robustness to Partial Occlusion,
CVPR20(8937-8946)
IEEE DOI
2008
Robustness, Training, Computational modeling, Solid modeling,
Artificial neural networks
BibRef
Wang, Q.L.[Qi-Long],
Xie, J.T.[Jiang-Tao],
Zuo, W.M.[Wang-Meng],
Zhang, L.[Lei],
Li, P.H.[Pei-Hua],
Deep CNNs Meet Global Covariance Pooling:
Better Representation and Generalization,
PAMI(43), No. 8, August 2021, pp. 2582-2597.
IEEE DOI
2107
Covariance matrices, Robustness, Estimation, Geometry, Measurement,
Visualization, Complexity theory, Global covariance pooling,
visual recognition
BibRef
Genzel, M.[Martin],
Macdonald, J.[Jan],
März, M.[Maximilian],
Solving Inverse Problems With Deep Neural Networks:
Robustness Included?,
PAMI(45), No. 1, January 2023, pp. 1119-1134.
IEEE DOI
2212
Artificial neural networks, Image reconstruction, Robustness,
Inverse problems, Deep learning, Perturbation methods, medical imaging
BibRef
Wan, W.T.[Wei-Tao],
Yu, C.[Cheng],
Chen, J.S.[Jian-Sheng],
Wu, T.[Tong],
Zhong, Y.[Yuanyi],
Yang, M.H.[Ming-Hsuan],
Shaping Deep Feature Space Towards Gaussian Mixture for Visual
Classification,
PAMI(45), No. 2, February 2023, pp. 2430-2444.
IEEE DOI
2301
Task analysis, Face recognition, Visualization, Training, Robustness,
Shape, Neural networks, Convolutional neural networks, adversarial robustness
BibRef
Shu, J.[Jun],
Yuan, X.[Xiang],
Meng, D.Y.[De-Yu],
Xu, Z.B.[Zong-Ben],
CMW-Net: Learning a Class-Aware Sample Weighting Mapping for Robust
Deep Learning,
PAMI(45), No. 10, October 2023, pp. 11521-11539.
IEEE DOI
2310
BibRef
Lokoc, J.[Jakub],
Vopálková, Z.[Zuzana],
Dokoupil, P.[Patrik],
Sandru, A.[Adrian],
Georgescu, M.I.[Mariana-Iuliana],
Ionescu, R.T.[Radu Tudor],
Feature-level Augmentation to Improve Robustness of Deep Neural
Networks to Affine Transformations,
AdvRob22(332-341).
Springer DOI
2304
BibRef
Chen, D.D.[Dong-Dong],
Tachella, J.[Julián],
Davies, M.E.[Mike E.],
Robust Equivariant Imaging: A fully unsupervised framework for
learning to image from noisy and partial measurements,
CVPR22(5637-5646)
IEEE DOI
2210
WWW Link. With noise.
Training, Photography, Inverse problems, Computational modeling,
Imaging, Self-supervised learning, Performance gain,
Self- semi- meta- unsupervised learning
BibRef
Iscen, A.[Ahmet],
Valmadre, J.[Jack],
Arnab, A.[Anurag],
Schmid, C.[Cordelia],
Learning with Neighbor Consistency for Noisy Labels,
CVPR22(4662-4671)
IEEE DOI
2210
Training, Deep learning, Stochastic processes,
Semisupervised learning,
Deep learning architectures and techniques
BibRef
Xu, Y.J.[You-Jiang],
Zhu, L.C.[Lin-Chao],
Jiang, L.[Lu],
Yang, Y.[Yi],
Faster Meta Update Strategy for Noise-Robust Deep Learning,
CVPR21(144-153)
IEEE DOI
2111
Training, Deep learning, Training data, Robustness,
Noise robustness
BibRef
Li, Y.[Yao],
Min, M.R.[Martin Renqiang],
Lee, T.[Thomas],
Yu, W.C.[Wen-Chao],
Kruus, E.[Erik],
Wang, W.[Wei],
Hsieh, C.J.[Cho-Jui],
Towards Robustness of Deep Neural Networks via Regularization,
ICCV21(7476-7485)
IEEE DOI
2203
Deep learning, Manifolds, Analytical models,
Computational modeling, Neural networks, Benchmark testing,
Recognition and classification
BibRef
Wang, X.S.[Xin-Shao],
Hua, Y.[Yang],
Kodirov, E.[Elyor],
Clifton, D.A.[David A.],
Robertson, N.M.[Neil M.],
ProSelfLC:
Progressive Self Label Correction for Training Robust Deep Neural Networks,
CVPR21(752-761)
IEEE DOI
2111
Training, Deep learning, Semantics, Neural networks,
Predictive models, Minimization, Entropy
BibRef
Dong, X.Y.[Xiao-Yi],
Chen, D.D.[Dong-Dong],
Zhou, H.[Hang],
Hua, G.[Gang],
Zhang, W.M.[Wei-Ming],
Yu, N.H.[Neng-Hai],
Self-Robust 3D Point Recognition via Gather-Vector Guidance,
CVPR20(11513-11521)
IEEE DOI
2008
Robustness, Perturbation methods,
Training, Image restoration, Aircraft
BibRef
Qian, Q.[Qi],
Hu, J.H.[Ju-Hua],
Li, H.[Hao],
Hierarchically Robust Representation Learning,
CVPR20(7334-7342)
IEEE DOI
2008
Robustness, Task analysis, Feature extraction, Optimization,
Benchmark testing, Training, Data models
BibRef
Rodríguez-Rodríguez, J.A.[José A.],
Molina-Cabello, M.A.[Miguel A.],
Benítez-Rochel, R.[Rafaela],
López-Rubio, E.[Ezequiel],
The Effect of Noise and Brightness on Convolutional Deep Neural
Networks,
MOI2QDN20(639-654).
Springer DOI
2103
BibRef
Zhang, R.,
Peng, Z.,
Wu, L.,
Li, Z.,
Luo, P.,
Exemplar Normalization for Learning Deep Representation,
CVPR20(12723-12732)
IEEE DOI
2008
Task analysis, Training, Tensile stress, Standards, Switches,
Noise measurement, Benchmark testing
BibRef
Jaiswal, M.S.,
Kang, B.,
Lee, J.,
Cho, M.,
MUTE: Inter-class Ambiguity Driven Multi-hot Target Encoding for Deep
Neural Network Design,
DeepVision20(3254-3263)
IEEE DOI
2008
Encoding, Neural networks, Hamming distance, Noise measurement,
Semantics, Computational modeling, Training
BibRef
Huang, Y.,
Yu, Y.,
An Internal Covariate Shift Bounding Algorithm for Deep Neural
Networks by Unitizing Layers' Outputs,
CVPR20(8462-8470)
IEEE DOI
2008
Integrated circuits, Upper bound, Training, Neural networks,
Convergence, Noise measurement, Earth
BibRef
Wang, Z.[Zhen],
Hu, G.S.[Guo-Sheng],
Hu, Q.H.[Qing-Hua],
Training Noise-Robust Deep Neural Networks via Meta-Learning,
CVPR20(4523-4532)
IEEE DOI
2008
Noise measurement, Optimization, Training, Noise robustness,
Natural language processing, Robustness
BibRef
Zhang, L.,
Qi, G.,
WCP: Worst-Case Perturbations for Semi-Supervised Deep Learning,
CVPR20(3911-3920)
IEEE DOI
2008
Perturbation methods, Training, Additives, Robustness,
Predictive models, Data models, Additive noise
BibRef
Han, J.,
Luo, P.,
Wang, X.,
Deep Self-Learning From Noisy Labels,
ICCV19(5137-5146)
IEEE DOI
2004
data handling, learning (artificial intelligence), neural nets,
robust network, noisy labels, clean data,
Optimization
BibRef
Gowal, S.[Sven],
Dvijotham, K.[Krishnamurthy],
Stanforth, R.[Robert],
Bunel, R.[Rudy],
Qin, C.[Chongli],
Uesato, J.[Jonathan],
Arandjelovic, R.[Relja],
Mann, T.A.[Timothy Arthur],
Kohli, P.[Pushmeet],
Scalable Verified Training for Provably Robust Image Classification,
ICCV19(4841-4850)
IEEE DOI
2004
Robustness, Training, Neural networks, Perturbation methods,
Upper bound, Adaptation models, Optimization
BibRef
Wang, Y.S.[Yi-Sen],
Ma, X.J.[Xing-Jun],
Chen, Z.Y.[Zai-Yi],
Luo, Y.[Yuan],
Yi, J.F.[Jin-Feng],
Bailey, J.[James],
Symmetric Cross Entropy for Robust Learning With Noisy Labels,
ICCV19(322-330)
IEEE DOI
2004
entropy, neural nets, symmetric cross entropy learning,
noise robust counterpart reverse cross entropy, noisy labels, Task analysis
BibRef
Nazaré, T.S.[Tiago S.],
da Costa, G.B.P.[Gabriel B. Paranhos],
Contato, W.A.[Welinton A.],
Ponti, M.P.[Moacir P.],
Deep Convolutional Neural Networks and Noisy Images,
CIARP17(416-424).
Springer DOI
1802
BibRef
Rodner, E.[Erik],
Simon, M.[Marcel],
Fisher, R.[Robert],
Denzler, J.[Joachim],
Fine-grained Recognition in the Noisy Wild: Sensitivity Analysis of
Convolutional Neural Networks Approaches,
BMVC16(xx-yy).
HTML Version.
1805
BibRef
Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
Network Overfitting .