14.5.8 LSTM: Long Short-Term Memory

Chapter Contents (Back)
Long Short-Term Memory. LSTM. Used in:
See also LSTM: Long Short-Term Memory for Captioning, Image Captioning.
See also Captioning, Image Captioning.

Liu, Q.S.[Qing-Shan], Zhou, F.[Feng], Hang, R.[Renlong], Yuan, X.T.[Xiao-Tong],
Bidirectional-Convolutional LSTM Based Spectral-Spatial Feature Learning for Hyperspectral Image Classification,
RS(9), No. 12, 2017, pp. xx-yy.
DOI Link 1802
BibRef

Xu, Y.H.[Yong-Hao], Zhang, L.P.[Liang-Pei], Du, B.[Bo], Zhang, F.[Fan],
Spectral-Spatial Unified Networks for Hyperspectral Image Classification,
GeoRS(56), No. 10, October 2018, pp. 5893-5909.
IEEE DOI 1810
Feature extraction, Iron, Training, Logic gates, Hyperspectral imaging, long short-term memory (LSTM)
See also Spectral-Spatial Classification of Hyperspectral Imagery with Cooperative Game. BibRef

Kim, H.I., Park, R.H.,
Residual LSTM Attention Network for Object Tracking,
SPLetters(25), No. 7, July 2018, pp. 1029-1033.
IEEE DOI 1807
learning (artificial intelligence), object tracking, ImageNet large scale visual recognition competition 2016, visual tracking BibRef

Hua, Y.S.[Yuan-Sheng], Mou, L.C.[Li-Chao], Zhu, X.X.[Xiao Xiang],
Recurrently exploring class-wise attention in a hybrid convolutional and bidirectional LSTM network for multi-label aerial image classification,
PandRS(149), 2019, pp. 188-199.
Elsevier DOI 1903
Multi-label classification, High-resolution aerial image, Convolutional Neural Network (CNN) l Class Attention Learning, Class dependency BibRef

Qi, W.C.[Wen-Chao], Zhang, X.[Xia], Wang, N.[Nan], Zhang, M.[Mao], Cen, Y.[Yi],
A Spectral-Spatial Cascaded 3D Convolutional Neural Network with a Convolutional Long Short-Term Memory Network for Hyperspectral Image Classification,
RS(11), No. 20, 2019, pp. xx-yy.
DOI Link 1910
BibRef

Ma, C.[Chao], Guo, Y.L.[Yu-Lan], Yang, J.G.[Jun-Gang], An, W.[Wei],
Learning Multi-View Representation With LSTM for 3-D Shape Recognition and Retrieval,
MultMed(21), No. 5, May 2019, pp. 1169-1182.
IEEE DOI 1905
convolutional neural nets, feature extraction, image classification, image representation, image retrieval, LSTM BibRef

Liu, Y.[Yong], Hao, X.[Xin], Zhang, B.[Biling], Zhang, Y.Y.[Yu-Yan],
Simplified long short-term memory model for robust and fast prediction,
PRL(136), 2020, pp. 81-86.
Elsevier DOI 2008
BibRef

Mei, S.H.[Shao-Hui], Ji, J.Y.[Jing-Yu], Hou, J.H.[Jun-Hui], Li, X.[Xu], Du, Q.[Qian],
Learning Sensor-Specific Spatial-Spectral Features of Hyperspectral Images via Convolutional Neural Networks,
GeoRS(55), No. 8, August 2017, pp. 4520-4533.
IEEE DOI 1708
Feature extraction, Hyperspectral imaging, Image sensors, Machine learning, Principal component analysis, Sensors, convolutional neural network (CNN), feature learning, hyperspectral, spatial-spectral BibRef

Hu, W.S.[Wen-Shuai], Li, H.C.[Heng-Chao], Pan, L.[Lei], Li, W.[Wei], Tao, R.[Ran], Du, Q.[Qian],
Spatial-Spectral Feature Extraction via Deep ConvLSTM Neural Networks for Hyperspectral Image Classification,
GeoRS(58), No. 6, June 2020, pp. 4237-4250.
IEEE DOI 2005
Classification, convolutional long short-term memory (ConvLSTM), deep learning, hyperspectral image (HSI) BibRef

Jain, M.[Monika], Subramanyam, A.V., Denman, S.[Simon], Sridharan, S.[Sridha], Fookes, C.[Clinton],
LSTM guided ensemble correlation filter tracking with appearance model pool,
CVIU(195), 2020, pp. 102935.
Elsevier DOI 2005
LSTM, Correlation filter, Object tracking, Convolutional neural network, Appearance model pool, CNN feature aggregation BibRef

Zhang, X.[Xin], Wang, Y.C.[Yong-Cheng], Zhang, N.[Ning], Xu, D.D.[Dong-Dong], Luo, H.Y.[Hui-Yuan], Chen, B.[Bo], Ben, G.L.[Guang-Li],
Spectral-Spatial Fractal Residual Convolutional Neural Network With Data Balance Augmentation for Hyperspectral Classification,
GeoRS(59), No. 12, December 2021, pp. 10473-10487.
IEEE DOI 2112
Feature extraction, Hyperspectral imaging, Fractals, IP networks, Data mining, Deep learning, Convolutional neural networks, deep learning BibRef


Kim, C.H.[Chan-Ho], Li, F.X.[Fu-Xin], Rehg, J.M.[James M.],
Multi-object Tracking with Neural Gating Using Bilinear LSTM,
ECCV18(VIII: 208-224).
Springer DOI 1810
BibRef

Garcea, F.[Fabio], Cucco, A.[Alessandro], Morra, L.[Lia], Lamberti, F.[Fabrizio],
Object Tracking Through Residual and Dense LSTMS,
ICIAR20(II:100-111).
Springer DOI 2007
BibRef

Du, Y., Yan, Y., Chen, S., Hua, Y., Wang, H.,
Object-Adaptive LSTM Network for Visual Tracking,
ICPR18(1719-1724)
IEEE DOI 1812
Proposals, Target tracking, Visualization, Object tracking, Logic gates, Training BibRef

Liang, Y., Zhou, Y.,
LSTM Multiple Object Tracker Combining Multiple Cues,
ICIP18(2351-2355)
IEEE DOI 1809
multiple object tracking, Long Short Term Memory, temporally correlated feature learning BibRef

Chen, C., Lin, X., Terejanu, G.,
An Approximate Bayesian Long Short-Term Memory Algorithm for Outlier Detection,
ICPR18(201-206)
IEEE DOI 1812
Uncertainty, Bayes methods, Kalman filters, Logic gates, Artificial neural networks, Estimation BibRef

Chen, K., Huang, L., Li, M., Zeng, X., Fan, Y.,
A Compact and Configurable Long Short-Term Memory Neural Network Hardware Architecture,
ICIP18(4168-4172)
IEEE DOI 1809
Hardware, Parallel processing, Logic gates, Recurrent neural networks, Computational modeling, Configurable Hardware Architecture BibRef

Roy, A., Todorovic, S.,
Learning to Learn Second-Order Back-Propagation for CNNs Using LSTMs,
ICPR18(97-102)
IEEE DOI 1812
Neurons, Convergence, Standards, Linear programming, Optimization, Training, Neural networks BibRef

Ouyang, X., Zhang, X., Ma, D., Agam, G.,
Generating Image Sequence from Description with LSTM Conditional GAN,
ICPR18(2456-2461)
IEEE DOI 1812
Generators, Semantics, Image generation, Training, Logic gates, Neural networks BibRef

Goswami, D.[Debanjan], Chakraborty, S.[Shayok],
Active Batch Sampling for Multi-label Classification with Binary User Feedback,
WACV24(2522-2531)
IEEE DOI 2404
Machine learning algorithms, Annotations, Training data, Artificial neural networks, Manuals, Machine learning, Algorithms, Image recognition and understanding BibRef

Ranganathan, H., Venkateswara, H., Chakraborty, S., Panchanathan, S.,
Multi-Label Deep Active Learning with Label Correlation,
ICIP18(3418-3422)
IEEE DOI 1809
Correlation, Training, Entropy, Data models, Uncertainty, Computational modeling, Linear programming, Deep Active Learning, LSTM BibRef

Huang, Y.[Yan], Wang, W.[Wei], Wang, L.[Liang],
Instance-Aware Image and Sentence Matching with Selective Multimodal LSTM,
CVPR17(7254-7262)
IEEE DOI 1711
Aggregates, Detectors, Image color analysis, Pattern recognition, Roads BibRef

Liang, X.D.[Xiao-Dan], Lin, L.[Liang], Shen, X.H.[Xiao-Hui], Feng, J.S.[Jia-Shi], Yan, S.C.[Shui-Cheng], Xing, E.P.[Eric P.],
Interpretable Structure-Evolving LSTM,
CVPR17(2175-2184)
IEEE DOI 1711
Correlation, Data models, Merging, Periodic structures, Stochastic processes, Topology BibRef

Wang, Z., Chen, T., Li, G., Xu, R., Lin, L.,
Multi-label Image Recognition by Recurrently Discovering Attentional Regions,
ICCV17(464-472)
IEEE DOI 1802
feature extraction, image recognition, learning (artificial intelligence), LSTM sub-network, VOC, Semantics BibRef

Li, Q., Zhao, X., Huang, K.,
Learning temporally correlated representations using LSTMS for visual tracking,
ICIP16(1614-1618)
IEEE DOI 1610
Correlation BibRef

Rajagopalan, S.S.[Shyam Sundar], Morency, L.P.[Louis-Philippe], Baltrusaitis, T.[Tadas], Goecke, R.[Roland],
Extending Long Short-Term Memory for Multi-View Structured Learning,
ECCV16(VII: 338-353).
Springer DOI 1611
BibRef

Weber, M.[Markus], Liwicki, M.[Marcus], Stricker, D.[Didier], Scholzel, C.[Christopher], Uchida, S.[Seiichi],
LSTM-Based Early Recognition of Motion Patterns,
ICPR14(3552-3557)
IEEE DOI 1412
LSTM: Long Short-Term Memory. Accuracy BibRef

Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
Neural Networks .


Last update:Sep 15, 2024 at 16:30:49