Liu, Q.S.[Qing-Shan],
Zhou, F.[Feng],
Hang, R.[Renlong],
Yuan, X.T.[Xiao-Tong],
Bidirectional-Convolutional LSTM Based Spectral-Spatial Feature
Learning for Hyperspectral Image Classification,
RS(9), No. 12, 2017, pp. xx-yy.
DOI Link
1802
BibRef
Xu, Y.H.[Yong-Hao],
Zhang, L.P.[Liang-Pei],
Du, B.[Bo],
Zhang, F.[Fan],
Spectral-Spatial Unified Networks for Hyperspectral Image
Classification,
GeoRS(56), No. 10, October 2018, pp. 5893-5909.
IEEE DOI
1810
Feature extraction, Iron, Training, Logic gates,
Hyperspectral imaging,
long short-term memory (LSTM)
See also Spectral-Spatial Classification of Hyperspectral Imagery with Cooperative Game.
BibRef
Kim, H.I.,
Park, R.H.,
Residual LSTM Attention Network for Object Tracking,
SPLetters(25), No. 7, July 2018, pp. 1029-1033.
IEEE DOI
1807
learning (artificial intelligence), object tracking,
ImageNet large scale visual recognition competition 2016,
visual tracking
BibRef
Hua, Y.S.[Yuan-Sheng],
Mou, L.C.[Li-Chao],
Zhu, X.X.[Xiao Xiang],
Recurrently exploring class-wise attention in a hybrid convolutional
and bidirectional LSTM network for multi-label aerial image
classification,
PandRS(149), 2019, pp. 188-199.
Elsevier DOI
1903
Multi-label classification, High-resolution aerial image,
Convolutional Neural Network (CNN) l Class Attention Learning,
Class dependency
BibRef
Qi, W.C.[Wen-Chao],
Zhang, X.[Xia],
Wang, N.[Nan],
Zhang, M.[Mao],
Cen, Y.[Yi],
A Spectral-Spatial Cascaded 3D Convolutional Neural Network with a
Convolutional Long Short-Term Memory Network for Hyperspectral Image
Classification,
RS(11), No. 20, 2019, pp. xx-yy.
DOI Link
1910
BibRef
Ma, C.[Chao],
Guo, Y.L.[Yu-Lan],
Yang, J.G.[Jun-Gang],
An, W.[Wei],
Learning Multi-View Representation With LSTM for 3-D Shape
Recognition and Retrieval,
MultMed(21), No. 5, May 2019, pp. 1169-1182.
IEEE DOI
1905
convolutional neural nets, feature extraction,
image classification, image representation, image retrieval,
LSTM
BibRef
Liu, Y.[Yong],
Hao, X.[Xin],
Zhang, B.[Biling],
Zhang, Y.Y.[Yu-Yan],
Simplified long short-term memory model for robust and fast
prediction,
PRL(136), 2020, pp. 81-86.
Elsevier DOI
2008
BibRef
Mei, S.H.[Shao-Hui],
Ji, J.Y.[Jing-Yu],
Hou, J.H.[Jun-Hui],
Li, X.[Xu],
Du, Q.[Qian],
Learning Sensor-Specific Spatial-Spectral Features of Hyperspectral
Images via Convolutional Neural Networks,
GeoRS(55), No. 8, August 2017, pp. 4520-4533.
IEEE DOI
1708
Feature extraction, Hyperspectral imaging, Image sensors,
Machine learning, Principal component analysis, Sensors,
convolutional neural network (CNN),
feature learning, hyperspectral, spatial-spectral
BibRef
Hu, W.S.[Wen-Shuai],
Li, H.C.[Heng-Chao],
Pan, L.[Lei],
Li, W.[Wei],
Tao, R.[Ran],
Du, Q.[Qian],
Spatial-Spectral Feature Extraction via Deep ConvLSTM Neural Networks
for Hyperspectral Image Classification,
GeoRS(58), No. 6, June 2020, pp. 4237-4250.
IEEE DOI
2005
Classification,
convolutional long short-term memory (ConvLSTM), deep learning,
hyperspectral image (HSI)
BibRef
Jain, M.[Monika],
Subramanyam, A.V.,
Denman, S.[Simon],
Sridharan, S.[Sridha],
Fookes, C.[Clinton],
LSTM guided ensemble correlation filter tracking with appearance
model pool,
CVIU(195), 2020, pp. 102935.
Elsevier DOI
2005
LSTM, Correlation filter, Object tracking,
Convolutional neural network, Appearance model pool, CNN feature aggregation
BibRef
Zhang, X.[Xin],
Wang, Y.C.[Yong-Cheng],
Zhang, N.[Ning],
Xu, D.D.[Dong-Dong],
Luo, H.Y.[Hui-Yuan],
Chen, B.[Bo],
Ben, G.L.[Guang-Li],
Spectral-Spatial Fractal Residual Convolutional Neural Network With
Data Balance Augmentation for Hyperspectral Classification,
GeoRS(59), No. 12, December 2021, pp. 10473-10487.
IEEE DOI
2112
Feature extraction, Hyperspectral imaging, Fractals, IP networks,
Data mining, Deep learning, Convolutional neural networks,
deep learning
BibRef
Garcea, F.[Fabio],
Cucco, A.[Alessandro],
Morra, L.[Lia],
Lamberti, F.[Fabrizio],
Object Tracking Through Residual and Dense LSTMS,
ICIAR20(II:100-111).
Springer DOI
2007
BibRef
Du, Y.,
Yan, Y.,
Chen, S.,
Hua, Y.,
Wang, H.,
Object-Adaptive LSTM Network for Visual Tracking,
ICPR18(1719-1724)
IEEE DOI
1812
Proposals, Target tracking, Visualization, Object tracking,
Logic gates, Training
BibRef
Liang, Y.,
Zhou, Y.,
LSTM Multiple Object Tracker Combining Multiple Cues,
ICIP18(2351-2355)
IEEE DOI
1809
multiple object tracking, Long Short Term Memory,
temporally correlated feature learning
BibRef
Chen, C.,
Lin, X.,
Terejanu, G.,
An Approximate Bayesian Long Short-Term Memory Algorithm for Outlier
Detection,
ICPR18(201-206)
IEEE DOI
1812
Uncertainty, Bayes methods, Kalman filters, Logic gates,
Artificial neural networks, Estimation
BibRef
Chen, K.,
Huang, L.,
Li, M.,
Zeng, X.,
Fan, Y.,
A Compact and Configurable Long Short-Term Memory Neural Network
Hardware Architecture,
ICIP18(4168-4172)
IEEE DOI
1809
Hardware, Parallel processing, Logic gates,
Recurrent neural networks, Computational modeling,
Configurable Hardware Architecture
BibRef
Roy, A.,
Todorovic, S.,
Learning to Learn Second-Order Back-Propagation for CNNs Using LSTMs,
ICPR18(97-102)
IEEE DOI
1812
Neurons, Convergence, Standards, Linear programming, Optimization,
Training, Neural networks
BibRef
Ouyang, X.,
Zhang, X.,
Ma, D.,
Agam, G.,
Generating Image Sequence from Description with LSTM Conditional GAN,
ICPR18(2456-2461)
IEEE DOI
1812
Generators, Semantics, Image generation, Training,
Logic gates, Neural networks
BibRef
Goswami, D.[Debanjan],
Chakraborty, S.[Shayok],
Active Batch Sampling for Multi-label Classification with Binary User
Feedback,
WACV24(2522-2531)
IEEE DOI
2404
Machine learning algorithms, Annotations, Training data,
Artificial neural networks, Manuals, Machine learning, Algorithms,
Image recognition and understanding
BibRef
Ranganathan, H.,
Venkateswara, H.,
Chakraborty, S.,
Panchanathan, S.,
Multi-Label Deep Active Learning with Label Correlation,
ICIP18(3418-3422)
IEEE DOI
1809
Correlation, Training, Entropy, Data models, Uncertainty,
Computational modeling, Linear programming, Deep Active Learning, LSTM
BibRef
Huang, Y.[Yan],
Wang, W.[Wei],
Wang, L.[Liang],
Instance-Aware Image and Sentence Matching with Selective Multimodal
LSTM,
CVPR17(7254-7262)
IEEE DOI
1711
Aggregates, Detectors, Image color analysis,
Pattern recognition, Roads
BibRef
Liang, X.D.[Xiao-Dan],
Lin, L.[Liang],
Shen, X.H.[Xiao-Hui],
Feng, J.S.[Jia-Shi],
Yan, S.C.[Shui-Cheng],
Xing, E.P.[Eric P.],
Interpretable Structure-Evolving LSTM,
CVPR17(2175-2184)
IEEE DOI
1711
Correlation, Data models, Merging, Periodic structures,
Stochastic processes, Topology
BibRef
Wang, Z.,
Chen, T.,
Li, G.,
Xu, R.,
Lin, L.,
Multi-label Image Recognition by Recurrently Discovering Attentional
Regions,
ICCV17(464-472)
IEEE DOI
1802
feature extraction, image recognition,
learning (artificial intelligence), LSTM sub-network, VOC,
Semantics
BibRef
Li, Q.,
Zhao, X.,
Huang, K.,
Learning temporally correlated representations using LSTMS for visual
tracking,
ICIP16(1614-1618)
IEEE DOI
1610
Correlation
BibRef
Rajagopalan, S.S.[Shyam Sundar],
Morency, L.P.[Louis-Philippe],
Baltrusaitis, T.[Tadas],
Goecke, R.[Roland],
Extending Long Short-Term Memory for Multi-View Structured Learning,
ECCV16(VII: 338-353).
Springer DOI
1611
BibRef
Weber, M.[Markus],
Liwicki, M.[Marcus],
Stricker, D.[Didier],
Scholzel, C.[Christopher],
Uchida, S.[Seiichi],
LSTM-Based Early Recognition of Motion Patterns,
ICPR14(3552-3557)
IEEE DOI
1412
LSTM: Long Short-Term Memory.
Accuracy
BibRef
Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
Neural Networks .