Mukherjee, J.,
Chatterji, B.N.,
Thinning of 3-D Images Using the Safe Point Thinning Algorithm (SPTA),
PRL(10), 1989, pp. 167-173.
BibRef
8900
Gong, W.,
Bertrand, G.,
A Note on 'Thinning of 3-D Images Using the Safe Point Thinning Algorithm
(SPTA)',
PRL(11), 1990, pp. 499-500.
BibRef
9000
Gong, W.,
Bertrand, G.,
A Simple Parallel 3D Thinning Algorithm,
ICPR90(I: 188-190).
IEEE DOI
BibRef
9000
Earlier:
A Fast Skeletonization Algorithm Using Derived Grids,
ICPR88(II: 776-778).
IEEE DOI
BibRef
Everat, J.C.,
Bertrand, G.,
New topological operators for segmentation,
ICIP96(III: 45-48).
IEEE DOI
9610
BibRef
Bertrand, G.[Gilles],
Malandain, G.[Grégoire],
A new topological classification of points in 3D images,
ECCV92(710-714).
Springer DOI
9205
BibRef
Ma, C.M.,
On Topology Preservation in 3D Thinning,
CVGIP(59), No. 3, May 1994, pp. 328-339.
DOI Link 3D parallel thinning conditions related to Ronse for 2D
See also Minimal test patterns for connectivity preservation in parallel thinning algorithms for binary digital images.
BibRef
9405
Ma, C.M.,
Connectivity Preservation of 3D 6-Subiteration Thinning Algorithms,
GMIP(58), No. 4, July 1996, pp. 382-386.
9609
Studies a class of parallel thinning algorithms.
BibRef
Ma, C.M.,
Sonka, M.,
A Fully Parallel 3D Thinning Algorithm and Its Applications,
CVIU(64), No. 3, November 1996, pp. 420-433.
9612
See also note on A fully parallel 3D thinning algorithm and its applications, A.
See also Automatic Correction of Ma and Sonka's Thinning Algorithm Using P-Simple Points.
BibRef
Ma, C.M.[Cherng-Min],
Wan, S.Y.[Shu-Yen],
Parallel Thinning Algorithms on 3D (18, 6) Binary Images,
CVIU(80), No. 3, December 2000, pp. 364-378.
DOI Link
0012
BibRef
Ma, C.M.,
A 3D Fully Parallel Thinning Algorithm for Generating Medial Faces,
PRL(16), 1995, pp. 83-87.
BibRef
9500
Ma, C.M.[Cherng-Min],
Topology preservation of template-based 6-subiteration reduction
operations,
PR(36), No. 8, August 2003, pp. 1775-1782.
Elsevier DOI
0304
BibRef
Marion-Poty, V.,
Two Methodologies to Implement 3D Thinning Algorithms on
Distributed Memory Machines,
PRAI(9), 1995, pp. 699-717.
BibRef
9500
Kong, T.Y.,
On Topology Preservation in 2-D and 3-D Thinning,
PRAI(9), 1995, pp. 813-844.
BibRef
9500
Palágyi, K.[Kálmán],
Kuba, A.[Attila],
A 3D 6-Subiteration Thinning Algorithm for Extracting Medial Lines,
PRL(19), No. 7, May 1998, pp. 613-627.
9808
BibRef
Palágyi, K.[Kálmán],
Kuba, A.[Attila],
A Parallel 3D 12-Subiteration Thinning Algorithm,
GMIP(61), No. 4, July 1999, pp. 199-221.
BibRef
9907
Earlier:
A parallel 12-subiteration 3D thinning algorithm to extract medial
lines,
CAIP97(400-407).
Springer DOI
9709
BibRef
Németh, G.[Gábor],
Palágyi, K.[Kálmán],
Topology Preserving Parallel Thinning Algorithms,
IJIST(21), No. 1, 2011, pp. 37-44.
DOI Link
BibRef
1100
Earlier: A2, A1:
Fully Parallel 3D Thinning Algorithms Based on Sufficient Conditions
for Topology Preservation,
DGCI09(481-492).
Springer DOI
0909
shape representation, skeletonization, thinning, parallel thinning
algorithms, topology preservation
BibRef
Palágyi, K.[Kálmán],
A Sequential 3D Curve-Thinning Algorithm Based on Isthmuses,
ISVC14(II: 406-415).
Springer DOI
1501
BibRef
And:
Parallel 3D 12-Subiteration Thinning Algorithms Based on Isthmuses,
ISVC13(I:87-98).
Springer DOI
1310
See also Sequential 3D Curve-Thinning Algorithm Based on Isthmuses, A.
BibRef
Németh, G.[Gábor],
Palágyi, K.[Kálmán],
3D Parallel Thinning Algorithms Based on Isthmuses,
ACIVS12(325-335).
Springer DOI
1209
BibRef
Palágyi, K.[Kálmán],
P-Simple Points and General-Simple Deletion Rules,
DGCI16(143-153).
WWW Link.
1606
BibRef
Earlier:
Deletion Rules for Equivalent Sequential and Parallel Reductions,
CIARP13(I:17-24).
Springer DOI
1311
BibRef
Kardos, P.[Péter],
Palágyi, K.[Kálmán],
On Topology Preservation for Hexagonal Parallel Thinning Algorithms,
IWCIA11(31-42).
Springer DOI
1105
BibRef
Németh, G.[Gábor],
Kardos, P.[Péter],
Palágyi, K.[Kálmán],
A Family of Topology-Preserving 3D Parallel 6:
Subiteration Thinning Algorithms,
IWCIA11(17-30).
Springer DOI
1105
BibRef
Earlier:
Topology Preserving 3D Thinning Algorithms Using Four and Eight
Subfields,
ICIAR10(I: 316-325).
Springer DOI
1006
BibRef
Palágyi, K.[Kálmán],
A 3-subiteration 3D thinning algorithm for extracting medial surfaces,
PRL(23), No. 6, April 2002, pp. 663-675.
Elsevier DOI
0202
BibRef
Palágyi, K.[Kálmán],
A Subiteration-Based Surface-Thinning Algorithm with a Period of Three,
DAGM07(294-303).
Springer DOI
0709
BibRef
And:
A 3-Subiteration Surface-Thinning Algorithm,
CAIP07(628-635).
Springer DOI
0708
BibRef
Kardos, P.[Péter],
Németh, G.[Gábor],
Palágyi, K.[Kálmán],
An Order-Independent Sequential Thinning Algorithm,
IWCIA09(162-175).
Springer DOI
0911
BibRef
Németh, G.[Gábor],
Kardos, P.[Péter],
Palágyi, K.[Kálmán],
Topology Preserving Parallel Smoothing for 3D Binary Images,
CompIMAGE10(287-298).
Springer DOI
1006
BibRef
Gagvani, N.[Nikhil],
Silver, D.[Deborah],
Parameter-Controlled Volume Thinning,
GMIP(61), No. 3, May 1999, pp. 149-164.
BibRef
9905
Chuang, J.H.[Jen-Hui],
Tsai, C.H.[Chi-Hao],
Ko, M.C.[Min-Chi],
Skeletonization of Three-Dimensional Object Using
Generalized Potential Field,
PAMI(22), No. 11, November 2000, pp. 1241-1251.
IEEE DOI
0012
See also Shape Representation Using a Generalized Potential-Field Model.
BibRef
Ma, C.M.[Cherng-Min],
Wan, S.Y.[Shu-Yen],
Lee, J.D.[Jiann-Der],
Three-Dimensional Topology Preserving Reduction on the 4-Subfields,
PAMI(24), No. 12, December 2002, pp. 1594-1605.
IEEE Abstract.
0212
BibRef
Xie, W.J.[Wen-Jie],
Thompson, R.P.[Robert P.],
Perucchio, R.[Renato],
A topology-preserving parallel 3D thinning algorithm for extracting the
curve skeleton,
PR(36), No. 7, July 2003, pp. 1529-1544.
Elsevier DOI
0304
BibRef
Wang, T.[Tao],
Basu, A.[Anup],
A note on 'A fully parallel 3D thinning algorithm and its applications',
PRL(28), No. 4, 1 March 2007, pp. 501-506.
Elsevier DOI
0701
Thinning; Skeletonization; 3D; Parallel
See also Fully Parallel 3D Thinning Algorithm and Its Applications, A.
BibRef
Wang, T.[Tao],
Cheng, I.[Irene],
Lopez, V.[Victor],
Bribiesca, E.[Ernesto],
Basu, A.[Anup],
Valence Normalized Spatial Median for skeletonization and matching,
S3DV09(55-62).
IEEE DOI
0910
BibRef
Lohou, C.[Christophe],
Bertrand, G.[Gilles],
Two symmetrical thinning algorithms for 3D binary images, based on
P-simple points,
PR(40), No. 8, August 2007, pp. 2301-2314.
Elsevier DOI
0704
Digital topology; Simple point; Topological number; P-simple point;
3D symmetrical thinning algorithm; Topology preservation
BibRef
Lohou, C.[Christophe],
Detection of the non-topology preservation of Ma's 3D surface-thinning
algorithm, by the use of P-simple points,
PRL(29), No. 6, 15 April 2008, pp. 822-827.
Elsevier DOI
0803
Digital topology; 3D parallel thinning algorithm; Topology preservation
BibRef
Lohou, C.[Christophe],
Detection of the non-topology preservation of Ma and Sonka's algorithm,
by the use of P-simple points,
CVIU(114), No. 3, March 2010, pp. 384-399.
Elsevier DOI
1003
Digital topology; Topology preservation; 3D parallel thinning
algorithm; P-simple points
See also Fully Parallel 3D Thinning Algorithm and Its Applications, A.
See also Automatic Correction of Ma's Thinning Algorithm Based on P-simple Points, An.
BibRef
Ben Boudaoud, L.[Lynda],
Solaiman, B.[Basel],
Tari, A.[Abdelkamel],
A modified ZS thinning algorithm by a hybrid approach,
VC(34), No. 5, May 2018, pp. 689-706.
WWW Link.
1804
BibRef
She, F.H.,
Chen, R.H.,
Gao, W.M.,
Hodgson, P.H.,
Kong, L.X.,
Hong, H.Y.,
Improved 3D Thinning Algorithms for Skeleton Extraction,
DICTA09(14-18).
IEEE DOI
0912
BibRef
Klette, G.[Gisela],
Digital Convexity and Cavity Trees,
PSIVTWS13(59-70).
Springer DOI
1402
BibRef
Klette, G.[Gisela],
Branch Voxels and Junctions in 3D Skeletons,
IWCIA06(34-44).
Springer DOI
0606
BibRef
Klette, G.[Gisela],
Pan, M.[Mian],
3D Topological Thinning by Identifying Non-simple Voxels,
IWCIA04(164-175).
Springer DOI
0505
BibRef
Manzanera, A.,
Bernard, T.M.,
Preteux, F.,
Longuet, B.,
Medial Faces from a Concise 3D Thinning Algorithm,
ICCV99(337-343).
IEEE DOI
BibRef
9900
Saha, P.K.,
Majumder, D.D.[D. Dutta],
Topology and shape preserving parallel thinning for 3D digital images:
A new approach,
CIAP97(I: 575-581).
Springer DOI
9709
See also Single Scan Boundary Removal Thinning Algorithm for 2-D Binary Object, A.
BibRef
Chapter on 2-D Feature Analysis, Extraction and Representations, Shape, Skeletons, Texture continues in
Distance Transforms, Distance Functions, Distance Measures .