22.3.6.2.8 Multi-Modal Emotion, Multimodal Emotion Recognition

Chapter Contents (Back)
Emotion Recognition. Multi-Modal Emotion. Speech Emotion.

Soleymani, M.[Mohammad], Lichtenauer, J., Pun, T.[Thierry], Pantic, M.[Maja],
A Multimodal Database for Affect Recognition and Implicit Tagging,
AffCom(3), No. 1, 2012, pp. 42-55.
IEEE DOI 1202
BibRef

Soleymani, M.[Mohammad], Pantic, M.[Maja], Pun, T.[Thierry],
Multimodal Emotion Recognition in Response to Videos,
AffCom(3), No. 2, 2012, pp. 211-223.
IEEE DOI 1208
BibRef

McKeown, G., Valstar, M.F., Cowie, R., Pantic, M., Schroder, M.,
The SEMAINE Database: Annotated Multimodal Records of Emotionally Colored Conversations between a Person and a Limited Agent,
AffCom(3), No. 1, 2012, pp. 5-17.
IEEE DOI 1202
BibRef

Wagner, J., Andre, E., Lingenfelser, F., Kim, J.H.[Jong-Hwa],
Exploring Fusion Methods for Multimodal Emotion Recognition with Missing Data,
AffCom(2), No. 4, 2011, pp. 206-218.
IEEE DOI 1202
BibRef

Lu, K.[Kun], Zhang, X.[Xin],
Multimodal Affect Recognition Using Boltzmann Zippers,
IEICE(E96-D), No. 11, November 2013, pp. 2496-2499.
WWW Link. 1311
BibRef

Li, H.B.[Hui-Bin], Ding, H.X.[Hua-Xiong], Huang, D.[Di], Wang, Y.H.[Yun-Hong], Zhao, X.[Xi], Morvan, J.M.[Jean-Marie], Chen, L.M.[Li-Ming],
An efficient multimodal 2D + 3D feature-based approach to automatic facial expression recognition,
CVIU(140), No. 1, 2015, pp. 83-92.
Elsevier DOI 1509
Facial expression recognition BibRef

Zhen, Q.K.[Qing-Kai], Huang, D.[Di], Wang, Y.H.[Yun-Hong], Chen, L.M.[Li-Ming],
Muscular Movement Model-Based Automatic 3D/4D Facial Expression Recognition,
MultMed(18), No. 7, July 2016, pp. 1438-1450.
IEEE DOI 1608
BibRef
Earlier:
Muscular Movement Model Based Automatic 3D Facial Expression Recognition,
MMMod15(I: 522-533).
Springer DOI 1501
emotion recognition BibRef

Zhao, X.[Xi], Dellandrea, E.[Emmanuel], Chen, L.M.[Li-Ming], Kakadiaris, I.A.,
Accurate Landmarking of Three-Dimensional Facial Data in the Presence of Facial Expressions and Occlusions Using a Three-Dimensional Statistical Facial Feature Model,
SMC-B(41), No. 5, October 2011, pp. 1417-1428.
IEEE DOI 1110
BibRef
Earlier: A1, A2, A3, Only:
A 3D Statistical Facial Feature Model and Its Application on Locating Facial Landmarks,
ACIVS09(686-697).
Springer DOI 0909

See also unified probabilistic framework for automatic 3D facial expression analysis based on a Bayesian belief inference and statistical feature models, A. BibRef

Zhao, X.[Xi], Szeptycki, P.[Przemyslaw], Dellandrea, E.[Emmanuel], Chen, L.M.[Li-Ming],
Precise 2.5D facial landmarking via an analysis by synthesis approach,
WACV09(1-7).
IEEE DOI 0912
BibRef

Zhao, X.[Xi], Huang, D.[Di], Dellandrea, E.[Emmanuel], Chen, L.M.[Li-Ming],
Automatic 3D Facial Expression Recognition Based on a Bayesian Belief Net and a Statistical Facial Feature Model,
ICPR10(3724-3727).
IEEE DOI 1008
BibRef

Fu, H.Z.[Huan-Zhang], Xiao, Z.Z.[Zhong-Zhe], Dellandréa, E.[Emmanuel], Dou, W.B.[Wei-Bei], Chen, L.M.[Li-Ming],
Image Categorization Using ESFS: A New Embedded Feature Selection Method Based on SFS,
ACIVS09(288-299).
Springer DOI 0909
Feature selection. BibRef

Zhalehpour, S.[Sara], Akhtar, Z.[Zahid], Erdem, C.E.[Cigdem Eroglu],
Multimodal emotion recognition based on peak frame selection from video,
SIViP(10), No. 5, May 2016, pp. 827-834.
WWW Link. 1608
BibRef

Wen, H.W.[Hong-Wei], Liu, Y.[Yue], Rekik, I.[Islem], Wang, S.P.[Sheng-Pei], Chen, Z.Q.[Zhi-Qiang], Zhang, J.S.[Ji-Shui], Zhang, Y.[Yue], Peng, Y.[Yun], He, H.G.[Hui-Guang],
Multi-modal multiple kernel learning for accurate identification of Tourette syndrome children,
PR(63), No. 1, 2017, pp. 601-611.
Elsevier DOI 1612
Tourette syndrome BibRef

Tsalamlal, M.Y., Amorim, M., Martin, J., Ammi, M.,
Combining Facial Expression and Touch for Perceiving Emotional Valence,
AffCom(9), No. 4, October 2018, pp. 437-449.
IEEE DOI 1812
Face recognition, Visualization, Haptic interfaces, Emotion recognition, Human computer interaction, multimodality BibRef

Poria, S.[Soujanya], Majumder, N.[Navonil], Hazarika, D.[Devamanyu], Cambria, E.[Erik], Gelbukh, A.[Alexander], Hussain, A.[Amir],
Multimodal Sentiment Analysis: Addressing Key Issues and Setting Up the Baselines,
IEEE_Int_Sys(33), No. 6, November 2018, pp. 17-25.
IEEE DOI 1902
Role of speaker models, importance of different modalities, generalizability. Sentiment analysis, Feature extraction, Visualization, Emotion recognition, Affective computing, Intelligent systems BibRef

Lee, J.Y.[Ji-Young], Kim, S.[Sunok], Kim, S.R.[Seung-Ryong], Sohn, K.H.[Kwang-Hoon],
Multi-Modal Recurrent Attention Networks for Facial Expression Recognition,
IP(29), 2020, pp. 6977-6991.
IEEE DOI 2007
Face recognition, Image color analysis, Videos, Emotion recognition, Benchmark testing, Databases, Task analysis, attention mechanism BibRef

Nguyen, D.[Dung], Nguyen, K.[Kien], Sridharan, S.[Sridha], Dean, D.[David], Fookes, C.[Clinton],
Deep spatio-temporal feature fusion with compact bilinear pooling for multimodal emotion recognition,
CVIU(174), 2018, pp. 33-42.
Elsevier DOI 1812
BibRef

Nguyen, D.[Dung], Nguyen, K.[Kien], Sridharan, S.[Sridha], Ghasemi, A.[Afsane], Dean, D.[David], Fookes, C.[Clinton],
Deep Spatio-Temporal Features for Multimodal Emotion Recognition,
WACV17(1215-1223)
IEEE DOI 1609
Convolution, Emotion recognition, Face, Feature extraction, Speech, Speech recognition, Streaming, media BibRef

Selvaraj, A.[Arivazhagan], Russel, N.S.[Newlin Shebiah],
Bimodal recognition of affective states with the features inspired from human visual and auditory perception system,
IJIST(29), No. 4, 2019, pp. 584-598.
DOI Link 1911
emotion recognition, biologically inspired model, wavelet transform BibRef

Wang, X.S.[Xu-Sheng], Chen, X.[Xing], Cao, C.J.[Cong-Jun],
Human emotion recognition by optimally fusing facial expression and speech feature,
SP:IC(84), 2020, pp. 115831.
Elsevier DOI 2004
Facial expression recognition, Speech emotion recognition, Bimodal fusion, Feature fusion, RNN BibRef

Chen, H.F.[Hai-Feng], Jiang, D.M.[Dong-Mei], Sahli, H.[Hichem],
Transformer Encoder With Multi-Modal Multi-Head Attention for Continuous Affect Recognition,
MultMed(23), 2021, pp. 4171-4183.
IEEE DOI 2112
Emotion recognition, Context modeling, Feature extraction, Correlation, Computational modeling, Visualization, Redundancy, inter-modality interaction BibRef

Zhang, K.[Ke], Li, Y.Q.[Yuan-Qing], Wang, J.Y.[Jing-Yu], Wang, Z.[Zhen], Li, X.L.[Xue-Long],
Feature Fusion for Multimodal Emotion Recognition Based on Deep Canonical Correlation Analysis,
SPLetters(28), 2021, pp. 1898-1902.
IEEE DOI 2110
Feature extraction, Correlation, Emotion recognition, TV, Visualization, Analytical models, Logic gates, multimodal emotion recognition BibRef

Tseng, S.Y.[Shao-Yen], Narayanan, S.[Shrikanth], Georgiou, P.[Panayiotis],
Multimodal Embeddings From Language Models for Emotion Recognition in the Wild,
SPLetters(28), 2021, pp. 608-612.
IEEE DOI 2104
Acoustics, Task analysis, Feature extraction, Convolution, Emotion recognition, Context modeling, Bit error rate BibRef

Huynh, V.T.[Van Thong], Yang, H.J.[Hyung-Jeong], Lee, G.S.[Guee-Sang], Kim, S.H.[Soo-Hyung],
End-to-End Learning for Multimodal Emotion Recognition in Video With Adaptive Loss,
MultMedMag(28), No. 2, April 2021, pp. 59-66.
IEEE DOI 2107
Feature extraction, Convolution, Emotion recognition, Data mining, Face recognition, Visualization, Training data, Affective Computing BibRef

Nguyen, D.[Dung], Nguyen, D.T.[Duc Thanh], Zeng, R.[Rui], Nguyen, T.T.[Thanh Thi], Tran, S.N.[Son N.], Nguyen, T.[Thin], Sridharan, S.[Sridha], Fookes, C.[Clinton],
Deep Auto-Encoders With Sequential Learning for Multimodal Dimensional Emotion Recognition,
MultMed(24), 2022, pp. 1313-1324.
IEEE DOI 2204
Emotion recognition, Feature extraction, Long short term memory, Visualization, Streaming media, Convolution, Auto-encoder, multimodal emotion recognition BibRef

Li, C.Q.[Chi-Qin], Xie, L.[Lun], Pan, H.[Hang],
Branch-Fusion-Net for Multi-Modal Continuous Dimensional Emotion Recognition,
SPLetters(29), 2022, pp. 942-946.
IEEE DOI 2205
Emotion recognition, Feature extraction, Convolution, Fuses, Convolutional neural networks, Data models, Context modeling, feature fusion BibRef

Gao, L.[Lei], Guan, L.[Ling],
A Discriminative Vectorial Framework for Multi-Modal Feature Representation,
MultMed(24), 2022, pp. 1503-1514.
IEEE DOI 2204
Semantics, Correlation, Task analysis, Emotion recognition, Visualization, Transforms, Image recognition, multi-modal hashing BibRef

Yang, D.K.[Ding-Kang], Huang, S.[Shuai], Liu, Y.[Yang], Zhang, L.H.[Li-Hua],
Contextual and Cross-Modal Interaction for Multi-Modal Speech Emotion Recognition,
SPLetters(29), 2022, pp. 2093-2097.
IEEE DOI 2211
Transformers, Emotion recognition, Convolution, Acoustics, Speech recognition, Stacking, Pipelines, Contextual interaction, speech emotion recognition BibRef

Shukla, A.[Abhinav], Petridis, S.[Stavros], Pantic, M.[Maja],
Does Visual Self-Supervision Improve Learning of Speech Representations for Emotion Recognition?,
AffCom(14), No. 1, January 2023, pp. 406-420.
IEEE DOI 2303
Visualization, Task analysis, Speech recognition, Emotion recognition, Training, Image reconstruction, cross-modal self-supervision BibRef

Hu, J.X.[Jia-Xiong], Huang, Y.[Yun], Hu, X.Z.[Xiao-Zhu], Xu, Y.Q.[Ying-Qing],
The Acoustically Emotion-Aware Conversational Agent With Speech Emotion Recognition and Empathetic Responses,
AffCom(14), No. 1, January 2023, pp. 17-30.
IEEE DOI 2303
Emotion recognition, Speech recognition, Databases, Sentiment analysis, Games, Convolutional neural networks, intelligent agents BibRef

Candemir, C.[Cemre], Gonul, A.S.[Ali Saffet], Selver, M.A.[M. Alper],
Automatic Detection of Emotional Changes Induced by Social Support Loss Using fMRI,
AffCom(14), No. 1, January 2023, pp. 706-717.
IEEE DOI 2303
Functional magnetic resonance imaging, Task analysis, Games, Transient analysis, Signal to noise ratio, Shape, emotional change (EC) BibRef

Ping, H.Q.[Huan-Qin], Zhang, D.[Dong], Zhu, S.[Suyang], Li, J.H.[Jun-Hui], Zhou, G.D.[Guo-Dong],
A Benchmark for Hierarchical Emotion Cause Extraction in Spoken Dialogues,
SPLetters(30), 2023, pp. 558-562.
IEEE DOI 2305
Task analysis, Feature extraction, Emotion recognition, Bit error rate, Oral communication, Data mining, Preforms, spoken dialogues BibRef

Bhattacharya, P.[Prasanta], Gupta, R.K.[Raj Kumar], Yang, Y.P.[Yin-Ping],
Exploring the Contextual Factors Affecting Multimodal Emotion Recognition in Videos,
AffCom(14), No. 2, April 2023, pp. 1547-1557.
IEEE DOI 2306
Emotion recognition, Videos, Visualization, Feature extraction, Physiology, High performance computing, Distance measurement, technology & devices for affective computing BibRef

Li, W.[Wei],
Finding Needles in a Haystack: Recognizing Emotions Just From Your Heart,
AffCom(14), No. 2, April 2023, pp. 1488-1505.
IEEE DOI 2306
Electrocardiography, Feature extraction, Heart, Emotion recognition, Heart rate variability, Physiology, finding needles in a haystack BibRef

Chang, C.M.[Chun-Min], Chao, G.Y.[Gao-Yi], Lee, C.C.[Chi-Chun],
Enforcing Semantic Consistency for Cross Corpus Emotion Prediction Using Adversarial Discrepancy Learning in Emotion,
AffCom(14), No. 2, April 2023, pp. 1098-1109.
IEEE DOI 2306
Databases, Semantics, Emotion recognition, Acoustic distortion, Training, Nonlinear distortion, Correlation, domain adaptation BibRef

Benssassi, E.M.[Esma Mansouri], Ye, J.[Juan],
Investigating Multisensory Integration in Emotion Recognition Through Bio-Inspired Computational Models,
AffCom(14), No. 2, April 2023, pp. 906-918.
IEEE DOI 2306
Feature extraction, Emotion recognition, Visualization, Brain modeling, Support vector machines, graph neural network BibRef

Fu, C.Z.[Chang-Zeng], Liu, C.R.[Chao-Ran], Ishi, C.T.[Carlos Toshinori], Ishiguro, H.[Hiroshi],
An Adversarial Training Based Speech Emotion Classifier With Isolated Gaussian Regularization,
AffCom(14), No. 3, July 2023, pp. 2361-2374.
IEEE DOI 2310
BibRef

Su, B.H.[Bo-Hao], Lee, C.C.[Chi-Chun],
Unsupervised Cross-Corpus Speech Emotion Recognition Using a Multi-Source Cycle-GAN,
AffCom(14), No. 3, July 2023, pp. 1991-2004.
IEEE DOI 2310
BibRef

Latif, S.[Siddique], Rana, R.[Rajib], Khalifa, S.[Sara], Jurdak, R.[Raja], Schuller, B.[Björn],
Self Supervised Adversarial Domain Adaptation for Cross-Corpus and Cross-Language Speech Emotion Recognition,
AffCom(14), No. 3, July 2023, pp. 1912-1926.
IEEE DOI 2310
BibRef

Bai, L.[Lei], Chang, R.[Rui], Chen, G.H.[Guang-Hui], Zhou, Y.[Yu],
Speech-Visual Emotion Recognition via Modal Decomposition Learning,
SPLetters(30), 2023, pp. 1452-1456.
IEEE DOI 2310
BibRef

Shu, Y.[Yezhi], Yang, P.[Pei], Liu, N.[Niqi], Zhang, S.[Shu], Zhao, G.Z.[Guo-Zhen], Liu, Y.J.[Yong-Jin],
Emotion Distribution Learning Based on Peripheral Physiological Signals,
AffCom(14), No. 3, July 2023, pp. 2470-2483.
IEEE DOI 2310
BibRef

Mao, R.[Rui], Liu, Q.[Qian], He, K.[Kai], Li, W.[Wei], Cambria, E.[Erik],
The Biases of Pre-Trained Language Models: An Empirical Study on Prompt-Based Sentiment Analysis and Emotion Detection,
AffCom(14), No. 3, July 2023, pp. 1743-1753.
IEEE DOI 2310
BibRef

Chen, X.H.[Xin-Hong], Li, Q.[Qing], Li, Z.X.[Zong-Xi], Xie, H.R.[Hao-Ran], Wang, F.L.[Fu Lee], Wang, J.P.[Jian-Ping],
A Reinforcement Learning Based Two-Stage Model for Emotion Cause Pair Extraction,
AffCom(14), No. 3, July 2023, pp. 1779-1790.
IEEE DOI 2310
BibRef

Hou, M.[Mixiao], Zhang, Z.[Zheng], Liu, C.[Chang], Lu, G.M.[Guang-Ming],
Semantic Alignment Network for Multi-Modal Emotion Recognition,
CirSysVideo(33), No. 9, September 2023, pp. 5318-5329.
IEEE DOI Code:
WWW Link. 2310
BibRef

Deng, H.[Huan], Yang, Z.G.[Zhen-Guo], Hao, T.Y.[Tian-Yong], Li, Q.[Qing], Liu, W.[Wenyin],
Multimodal Affective Computing With Dense Fusion Transformer for Inter- and Intra-Modality Interactions,
MultMed(25), 2023, pp. 6575-6587.
IEEE DOI 2311
integrate textual, acoustic, and visual information for multimodal affective computing BibRef

Zhu, T.[Tong], Li, L.[Leida], Yang, J.F.[Ju-Feng], Zhao, S.C.[Si-Cheng], Xiao, X.[Xiao],
Multimodal Emotion Classification With Multi-Level Semantic Reasoning Network,
MultMed(25), 2023, pp. 6868-6880.
IEEE DOI 2311
BibRef

Wu, Y.C.[Yi-Chiao], Chiu, L.W.[Li-Wen], Lai, C.C.[Chun-Chih], Wu, B.F.[Bing-Fei], Lin, S.S.J.[Sunny S. J.],
Recognizing, Fast and Slow: Complex Emotion Recognition With Facial Expression Detection and Remote Physiological Measurement,
AffCom(14), No. 4, October 2023, pp. 3177-3190.
IEEE DOI 2312
BibRef

Gu, Y.[Yu], Zhang, X.[Xiang], Yan, H.[Huan], Huang, J.Y.[Jing-Yang], Liu, Z.[Zhi], Dong, M.[Mianxiong], Ren, F.[Fuji],
WiFE: WiFi and Vision Based Unobtrusive Emotion Recognition via Gesture and Facial Expression,
AffCom(14), No. 4, October 2023, pp. 2567-2581.
IEEE DOI 2312
BibRef

Li, S.[Shuzhen], Zhang, T.[Tong], Chen, B.[Bianna], Chen, C.L.P.[C. L. Philip],
MIA-Net: Multi-Modal Interactive Attention Network for Multi-Modal Affective Analysis,
AffCom(14), No. 4, October 2023, pp. 2796-2809.
IEEE DOI 2312
BibRef

Tellamekala, M.K.[Mani Kumar], Amiriparian, S.[Shahin], Schuller, B.W.[Björn W.], André, E.[Elisabeth], Giesbrecht, T.[Timo], Valstar, M.[Michel],
COLD Fusion: Calibrated and Ordinal Latent Distribution Fusion for Uncertainty-Aware Multimodal Emotion Recognition,
PAMI(46), No. 2, February 2024, pp. 805-822.
IEEE DOI 2401
BibRef

Li, J.[Jiang], Wang, X.P.[Xiao-Ping], Lv, G.Q.[Guo-Qing], Zeng, Z.G.[Zhi-Gang],
GraphCFC: A Directed Graph Based Cross-Modal Feature Complementation Approach for Multimodal Conversational Emotion Recognition,
MultMed(26), 2024, pp. 77-89.
IEEE DOI 2401
BibRef

Palash, M.[Mijanur], Bhargava, B.[Bharat],
EMERSK: Explainable Multimodal Emotion Recognition With Situational Knowledge,
MultMed(26), 2024, pp. 2785-2794.
IEEE DOI 2402
Emotion recognition, Face recognition, Visualization, Feature extraction, Convolutional neural networks, Reliability, LSTM BibRef

Mai, S.[Sijie], Sun, Y.[Ya], Xiong, A.[Aolin], Zeng, Y.[Ying], Hu, H.F.[Hai-Feng],
Multimodal Boosting: Addressing Noisy Modalities and Identifying Modality Contribution,
MultMed(26), 2024, pp. 3018-3033.
IEEE DOI 2402
Noise measurement, Task analysis, Boosting, Representation learning, Emotion recognition, Tensors, multimodal emotion recognition BibRef

Yang, K.[Kailai], Zhang, T.[Tianlin], Ananiadou, S.[Sophia],
Disentangled Variational Autoencoder for Emotion Recognition in Conversations,
AffCom(15), No. 2, April 2024, pp. 508-518.
IEEE DOI 2406
Task analysis, Emotion recognition, Hidden Markov models, Context modeling, Decoding, Oral communication, disentangled representations BibRef

Quiros, J.D.V.[Jose David Vargas], Cabrera-Quiros, L.[Laura], Oertel, C.[Catharine], Hung, H.[Hayley],
Impact of Annotation Modality on Label Quality and Model Performance in the Automatic Assessment of Laughter In-the-Wild,
AffCom(15), No. 2, April 2024, pp. 519-534.
IEEE DOI 2406
Annotations, Task analysis, Machine learning, Labeling, Face recognition, Physiology, Cameras, Action recognition, mingling datasets BibRef

Bensemann, J.[Joshua], Cheena, H.[Hasnain], Huang, D.T.J.[David Tse Jung], Broadbent, E.[Elizabeth], Williams, J.[Jonathan], Wicker, J.[Jörg],
From What You See to What We Smell: Linking Human Emotions to Bio-Markers in Breath,
AffCom(15), No. 2, April 2024, pp. 465-477.
IEEE DOI 2406
Motion pictures, Feature extraction, Data mining, Monitoring, Visualization, Reliability, Machine learning, Machine learning, breath analysis BibRef

Gao, Y.[Yuan], Wang, L.[Longbiao], Liu, J.X.[Jia-Xing], Dang, J.[Jianwu], Okada, S.[Shogo],
Adversarial Domain Generalized Transformer for Cross-Corpus Speech Emotion Recognition,
AffCom(15), No. 2, April 2024, pp. 697-708.
IEEE DOI 2406
Feature extraction, Task analysis, Transformers, Training, Emotion recognition, Data models, Data mining, domain generalization BibRef

Chawla, K.[Kushal], Clever, R.[Rene], Ramirez, J.[Jaysa], Lucas, G.M.[Gale M.], Gratch, J.[Jonathan],
Towards Emotion-Aware Agents for Improved User Satisfaction and Partner Perception in Negotiation Dialogues,
AffCom(15), No. 2, April 2024, pp. 433-444.
IEEE DOI 2406
Emotion recognition, Task analysis, Particle measurements, Atmospheric measurements, Training, Oral communication, Metadata, user satisfaction BibRef

Sun, T.[Teng], Wei, Y.W.[Yin-Wei], Ni, J.T.[Jun-Tong], Liu, Z.X.[Zi-Xin], Song, X.M.[Xue-Meng], Wang, Y.W.[Yao-Wei], Nie, L.Q.[Li-Qiang],
Muti-Modal Emotion Recognition via Hierarchical Knowledge Distillation,
MultMed(26), 2024, pp. 9036-9046.
IEEE DOI 2408
Feature extraction, Emotion recognition, Optimization, Predictive models, Acoustics, Visualization, Contrastive learning, multi-modal representation learning BibRef


Bohy, H.[Hugo], Tran, M.[Minh], El Haddad, K.[Kevin], Dutoit, T.[Thierry], Soleymani, M.[Mohammad],
Social-MAE: A Transformer-Based Multimodal Autoencoder for Face and Voice,
FG24(1-5)
IEEE DOI Code:
WWW Link. 2408
Emotion recognition, Adaptation models, Codes, Face recognition, Estimation, Gesture recognition, Transformers BibRef

de Mattos, F.L.[Flavia Letícia], Pellenz, M.E.[Marcelo E.], de Souza Britto, A.[Alceu],
Time Distributed Multiview Representation for Speech Emotion Recognition,
CIARP23(I:148-162).
Springer DOI 2312
BibRef

Moroto, Y.[Yuya], Maeda, K.[Keisuke], Ogawa, T.[Takahiro], Haseyama, M.[Miki],
Multi-View Variational Recurrent Neural Network for Human Emotion Recognition Using Multi-Modal Biological Signals,
ICIP23(2925-2929)
IEEE DOI 2312
BibRef

Low, Y.Y.[Yin-Yin], Phan, R.C.W.[Raphaël C.W.], Pal, A.[Arghya], Chang, X.J.[Xiao-Jun],
USURP: Universal Single-Source Adversarial Perturbations on Multimodal Emotion Recognition,
ICIP23(2150-2154)
IEEE DOI 2312
BibRef

Srivastava, D.[Dhruv], Singh, A.K.[Aditya Kumar], Tapaswi, M.[Makarand],
How You Feelin'? Learning Emotions and Mental States in Movie Scenes,
CVPR23(2517-2528)
IEEE DOI 2309
BibRef

Zhang, S.[Sitao], Pan, Y.[Yimu], Wang, J.Z.[James Z.],
Learning Emotion Representations from Verbal and Nonverbal Communication,
CVPR23(18993-19004)
IEEE DOI 2309
BibRef

Zhang, Z.C.[Zhi-Cheng], Wang, L.J.[Li-Juan], Yang, J.F.[Ju-Feng],
Weakly Supervised Video Emotion Detection and Prediction via Cross-Modal Temporal Erasing Network,
CVPR23(18888-18897)
IEEE DOI 2309
BibRef

Li, Y.[Yong], Wang, Y.Z.[Yuan-Zhi], Cui, Z.[Zhen],
Decoupled Multimodal Distilling for Emotion Recognition,
CVPR23(6631-6640)
IEEE DOI 2309
BibRef

Xu, C.[Chao], Zhu, J.W.[Jun-Wei], Zhang, J.N.[Jiang-Ning], Han, Y.[Yue], Chu, W.Q.[Wen-Qing], Tai, Y.[Ying], Wang, C.J.[Cheng-Jie], Xie, Z.F.[Zhi-Feng], Liu, Y.[Yong],
High-Fidelity Generalized Emotional Talking Face Generation with Multi-Modal Emotion Space Learning,
CVPR23(6609-6619)
IEEE DOI 2309
BibRef

Palotti, J.[Joao], Narula, G.[Gagan], Raheem, L.[Lekan], Bay, H.[Herbert],
Analysis of Emotion Annotation Strength Improves Generalization in Speech Emotion Recognition Models,
ABAW23(5829-5837)
IEEE DOI 2309
BibRef

Hayat, H.[Hassan], Ventura, C.[Carles], Lapedriza, A.[Agata],
Predicting the Subjective Responses' Emotion in Dialogues with Multi-task Learning,
IbPRIA23(693-704).
Springer DOI 2307
BibRef

Dong, K.[Ke], Peng, H.[Hao], Che, J.[Jie],
Dynamic-static Cross Attentional Feature Fusion Method for Speech Emotion Recognition,
MMMod23(II: 350-361).
Springer DOI 2304
BibRef

Parameshwara, R.[Ravikiran], Radwan, I.[Ibrahim], Subramanian, R.[Ramanathan], Goecke, R.[Roland],
Examining Subject-Dependent and Subject-Independent Human Affect Inference from Limited Video Data,
FG23(1-6)
IEEE DOI 2303
Training, Databases, Annotations, Face recognition, Memory architecture, Estimation, Gesture recognition BibRef

Gomaa, A.[Ahmed], Maier, A.[Andreas], Kosti, R.[Ronak],
Supervised Contrastive Learning for Robust and Efficient Multi-modal Emotion and Sentiment Analysis,
ICPR22(2423-2429)
IEEE DOI 2212
Training, Sentiment analysis, Computational modeling, Predictive models, Transformers, Robustness BibRef

Liu, H.Y.[Hai-Yang], Zhu, Z.H.[Zi-Hao], Iwamoto, N.[Naoya], Peng, Y.C.[Yi-Chen], Li, Z.Q.[Zheng-Qing], Zhou, Y.[You], Bozkurt, E.[Elif], Zheng, B.[Bo],
BEAT: A Large-Scale Semantic and Emotional Multi-modal Dataset for Conversational Gestures Synthesis,
ECCV22(VII:612-630).
Springer DOI 2211
Dataset, Emotions. BibRef

Chudasama, V.[Vishal], Kar, P.[Purbayan], Gudmalwar, A.[Ashish], Shah, N.[Nirmesh], Wasnik, P.[Pankaj], Onoe, N.[Naoyuki],
M2FNet: Multi-modal Fusion Network for Emotion Recognition in Conversation,
MULA22(4651-4660)
IEEE DOI 2210
Human computer interaction, Emotion recognition, Visualization, Adaptation models, Benchmark testing, Feature extraction, Robustness BibRef

Patania, S.[Sabrina], d'Amelio, A.[Alessandro], Lanzarotti, R.[Raffaella],
Exploring Fusion Strategies in Deep Multimodal Affect Prediction,
CIAP22(II:730-741).
Springer DOI 2205
BibRef

Wei, G., Jian, L., Mo, S.,
Multimodal(Audio, Facial and Gesture) based Emotion Recognition challenge,
FG20(908-911)
IEEE DOI 2102
Emotion recognition, Feature extraction, Face recognition, Data models, Hidden Markov models, Image recognition BibRef

Lusquino Filho, L.A.D., Oliveira, L.F.R., Carneiro, H.C.C., Guarisa, G.P., Filho, A.L., França, F.M.G., Lima, P.M.V.,
A weightless regression system for predicting multi-modal empathy,
FG20(657-661)
IEEE DOI 2102
Training, Random access memory, Mel frequency cepstral coefficient, Predictive models, regression wisard BibRef

Shao, J., Zhu, J., Wei, Y., Feng, Y., Zhao, X.,
Emotion Recognition by Edge-Weighted Hypergraph Neural Network,
ICIP19(2144-2148)
IEEE DOI 1910
Emotion recognition, edge-weighted hypergraph neural network, multi-modality BibRef

Guo, J., Zhou, S., Wu, J., Wan, J., Zhu, X., Lei, Z., Li, S.Z.,
Multi-modality Network with Visual and Geometrical Information for Micro Emotion Recognition,
FG17(814-819)
IEEE DOI 1707
Computer architecture, Emotion recognition, Face, Face recognition, Feature extraction, Geometry, Visualization BibRef

Wan, J., Escalera, S., Anbarjafari, G., Escalante, H.J., Baro, X., Guyon, I., Madadi, M., Allik, J., Gorbova, J., Lin, C., Xie, Y.,
Results and Analysis of ChaLearn LAP Multi-modal Isolated and Continuous Gesture Recognition, and Real Versus Fake Expressed Emotions Challenges,
EmotionComp17(3189-3197)
IEEE DOI 1802
Emotion recognition, Feature extraction, Gesture recognition, Skeleton, Spatiotemporal phenomena, Training BibRef

Ranganathan, H., Chakraborty, S., Panchanathan, S.,
Multimodal emotion recognition using deep learning architectures,
WACV16(1-9)
IEEE DOI 1606
Databases BibRef

Wei, H.L.[Hao-Lin], Monaghan, D.S.[David S.], O'Connor, N.E.[Noel E.], Scanlon, P.[Patricia],
A New Multi-modal Dataset for Human Affect Analysis,
HBU14(42-51).
Springer DOI 1411
Dataset, Human Affect. BibRef

Chen, S.Z.[Shi-Zhi], Tian, Y.L.[Ying-Li],
Margin-constrained multiple kernel learning based multi-modal fusion for affect recognition,
FG13(1-7)
IEEE DOI 1309
face recognition BibRef

Gajsek, R.[Rok], Štruc, V.[Vitomir], Mihelic, F.[France],
Multi-modal Emotion Recognition Using Canonical Correlations and Acoustic Features,
ICPR10(4133-4136).
IEEE DOI 1008
BibRef

Escalera, S.[Sergio], Puertas, E.[Eloi], Radeva, P.I.[Petia I.], Pujol, O.[Oriol],
Multi-modal laughter recognition in video conversations,
CVPR4HB09(110-115).
IEEE DOI 0906
BibRef

Meghjani, M.[Malika], Ferrie, F.P.[Frank P.], Dudek, G.[Gregory],
Bimodal information analysis for emotion recognition,
WACV09(1-6).
IEEE DOI 0912
BibRef

Cohn, J.F., and Katz, G.S.,
Bimodal Expression of Emotion by Face and Voice,
MMC98(xx-yy), Workshop on Face/Gesture Recognition and Their Applications.
PDF File. BibRef 9800

Chen, L.S., Huang, T.S., Miyasato, T., Nakatsu, R.,
Multimodal Human Emotion/Expression Recognition,
AFGR98(366-371).
IEEE DOI BibRef 9800

Chapter on Face Recognition, Detection, Tracking, Gesture Recognition, Fingerprints, Biometrics continues in
Emotion Recognition, from Other Than Faces .


Last update:Sep 15, 2024 at 16:30:49