Karimpour, M.[Morvarid],
Saray, S.N.[Shiva Noori],
Tahmoresnezhad, J.[Jafar],
Aghababa, M.P.[Mohammad Pourmahmood],
Multi-source domain adaptation for image classification,
MVA(31), No. 6, August 2020, pp. Article44.
Springer DOI
2008
BibRef
Niu, C.[Chang],
Shang, J.[Junyuan],
Zhou, Z.H.[Zhi-Heng],
Huang, J.C.[Jun-Chu],
Wang, T.L.[Tian-Lei],
Li, X.W.[Xiang-Wei],
Common-specific feature learning for multi-source domain adaptation,
IET-IPR(14), No. 16, 19 December 2020, pp. 4049-4058.
DOI Link
2103
BibRef
Zuo, Y.,
Yao, H.,
Xu, C.,
Attention-Based Multi-Source Domain Adaptation,
IP(30), 2021, pp. 3793-3803.
IEEE DOI
2104
Correlation, Adaptation models, Feature extraction,
Target recognition, Data models, Transfer learning, Visualization,
weighted moment distance
BibRef
Schrom, S.[Sebastian],
Hasler, S.[Stephan],
Adamy, J.[Jürgen],
Improved multi-source domain adaptation by preservation of factors,
IVC(112), 2021, pp. 104209.
Elsevier DOI
2107
Domain adaptation, Multi-source domain adaptation,
Adversarial domain adaptation, Negative transfer, Domain factors
BibRef
Yin, Y.M.[Yue-Ming],
Yang, Z.[Zhen],
Hu, H.F.[Hai-Feng],
Wu, X.F.[Xiao-Fu],
Universal multi-Source domain adaptation for image classification,
PR(121), 2022, pp. 108238.
Elsevier DOI
2109
Universal domain adaptation, Multi-source domain adaptation,
Universal multi-source domain adaptation,
Pseudo-margin vector
BibRef
Lasloum, T.[Tariq],
Alhichri, H.[Haikel],
Bazi, Y.[Yakoub],
Alajlan, N.[Naif],
SSDAN: Multi-Source Semi-Supervised Domain Adaptation Network for
Remote Sensing Scene Classification,
RS(13), No. 19, 2021, pp. xx-yy.
DOI Link
2110
BibRef
Chen, Z.L.[Zi-Liang],
Wei, P.X.[Peng-Xu],
Zhuang, J.Y.[Jing-Yu],
Li, G.B.[Guan-Bin],
Lin, L.[Liang],
Deep CockTail Networks,
IJCV(129), No. 8, August 2021, pp. 2328-2351.
Springer DOI
2108
BibRef
Xu, R.J.[Rui-Jia],
Chen, Z.L.[Zi-Liang],
Zuo, W.M.[Wang-Meng],
Yan, J.J.[Jun-Jie],
Lin, L.[Liang],
Deep CockTail Network: Multi-source Unsupervised Domain Adaptation
with Category Shift,
CVPR18(3964-3973)
IEEE DOI
1812
Feature extraction, Adaptation models, Training, Protocols,
Task analysis, Benchmark testing, Visualization
BibRef
Wu, G.B.[Guang-Bin],
Chen, W.S.[Wei-Shan],
Zuo, W.M.[Wang-Meng],
Zhang, D.[David],
Unsupervised Domain Adaptation with Robust Deep Logistic Regression,
PSIVT17(199-211).
Springer DOI
1802
BibRef
Tao, J.W.[Jian-Wen],
Dan, Y.F.[Yu-Fang],
Zhou, D.[Di],
Robust multi-source co-adaptation with adaptive loss minimization,
SP:IC(99), 2021, pp. 116455.
Elsevier DOI
2111
Multi-source adaptation, Domain generalization, Adaptive loss,
Maximum mean discrepancy
BibRef
Rakshit, S.[Sayan],
Mohanty, A.[Anwesh],
Chavhan, R.[Ruchika],
Banerjee, B.[Biplab],
Roig, G.[Gemma],
Chaudhuri, S.[Subhasis],
FRIDA: Generative feature replay for incremental domain adaptation,
CVIU(217), 2022, pp. 103367.
Elsevier DOI
2203
Domain adaptation, Incremental learning,
Image classification, Adversarial learning
BibRef
Rakshit, S.[Sayan],
Balasubramanian, S.,
Bandyopadhyay, H.[Hmrishav],
Bharambe, P.[Piyush],
Desetti, S.N.[Sai Nandan],
Banerjee, B.[Biplab],
Chaudhuri, S.[Subhasis],
Open-Set Domain Adaptation Under Few Source-Domain Labeled Samples,
L3D-IVU22(4028-4037)
IEEE DOI
2210
Measurement, Visualization, Satellites, Benchmark testing,
Optical imaging, Adversarial machine learning, Data models
BibRef
Rakshit, S.[Sayan],
Tamboli, D.[Dipesh],
Meshram, P.S.[Pragati Shuddhodhan],
Banerjee, B.[Biplab],
Roig, G.[Gemma],
Chaudhuri, S.[Subhasis],
Multi-source Open-set Deep Adversarial Domain Adaptation,
ECCV20(XXVI:735-750).
Springer DOI
2011
BibRef
Rakshit, S.[Sayan],
Banerjee, B.[Biplab],
Roig, G.[Gemma],
Chaudhuri, S.[Subhasis],
Unsupervised Multi-source Domain Adaptation Driven by Deep Adversarial
Ensemble Learning,
GCPR19(485-498).
Springer DOI
1911
BibRef
Liu, Y.H.[Yong-Hui],
Ren, C.X.[Chuan-Xian],
A Two-Way alignment approach for unsupervised multi-Source domain
adaptation,
PR(124), 2022, pp. 108430.
Elsevier DOI
2203
Domain adaptation, Feature extraction, Category prototype,
Adversarial training, Instance weighting
BibRef
Xiong, L.[Lin],
Ye, M.[Mao],
Zhang, D.[Dan],
Gan, Y.[Yan],
Liu, Y.G.[Yi-Guang],
Source data-free domain adaptation for a faster R-CNN,
PR(124), 2022, pp. 108436.
Elsevier DOI
2203
Source data-free, Object detection, Domain adaptation, Transfer learning
BibRef
Liu, J.[Jia],
Xuan, W.J.[Wen-Jie],
Gan, Y.H.[Yu-Hang],
Zhan, Y.B.[Yi-Bing],
Liu, J.[Juhua],
Du, B.[Bo],
An End-to-end Supervised Domain Adaptation Framework for Cross-Domain
Change Detection,
PR(132), 2022, pp. 108960.
Elsevier DOI
2209
Change Detection, Supervised Domain Adaptation, Image Adaptation,
Feature Adaptation
BibRef
Wang, M.[Mengzhu],
Chen, D.[Dingyao],
Tan, F.Z.[Fang-Zhou],
Liang, T.Y.[Tian-Yi],
Lan, L.[Long],
Zhang, X.[Xiang],
Luo, Z.G.[Zhi-Gang],
Domain-specific feature recalibration and alignment for multi-source
unsupervised domain adaptation,
IET-CV(17), No. 1, 2023, pp. 26-38.
DOI Link
2303
BibRef
Wang, J.[Jie],
Zhong, C.L.[Chao-Liang],
Feng, C.[Cheng],
Zhang, Y.[Ying],
Sun, J.[Jun],
Yokota, Y.[Yasuto],
Discriminative Mutual Learning for Multi-Target Domain Adaptation,
ICPR22(2900-2906)
IEEE DOI
2212
Learning systems, Adaptation models, Predictive models,
Benchmark testing, Data models
BibRef
Xia, H.F.[Hai-Feng],
Wang, P.[Pu],
Ding, Z.M.[Zheng-Ming],
Incomplete Multi-view Domain Adaptation via Channel Enhancement and
Knowledge Transfer,
ECCV22(XXXIV:200-217).
Springer DOI
2211
BibRef
Peng, X.K.[Xiao-Kang],
Wei, Y.[Yake],
Deng, A.D.[An-Dong],
Wang, D.[Dong],
Hu, D.[Di],
Balanced Multimodal Learning via On-the-fly Gradient Modulation,
CVPR22(8228-8237)
IEEE DOI
2210
Adaptation models, Codes, Gaussian noise, Modulation,
Pattern recognition, Task analysis, Vision+X,
Video analysis and understanding
BibRef
Li, R.H.[Rui-Huang],
Jia, X.[Xu],
He, J.Z.[Jian-Zhong],
Chen, S.J.[Shuai-Jun],
Hu, Q.H.[Qing-Hua],
T-SVDNet: Exploring High-Order Prototypical Correlations for
Multi-Source Domain Adaptation,
ICCV21(9971-9980)
IEEE DOI
2203
Training, Adaptation models, Tensors, Correlation, Benchmark testing,
Data structures, Matrix decomposition, Representation learning,
Transfer/Low-shot/Semi/Unsupervised Learning
BibRef
Gong, R.[Rui],
Dai, D.X.[Deng-Xin],
Chen, Y.H.[Yu-Hua],
Li, W.[Wen],
Van Gool, L.J.[Luc J.],
mDALU: Multi-Source Domain Adaptation and Label Unification with
Partial Datasets,
ICCV21(8856-8865)
IEEE DOI
2203
Image segmentation, Uncertainty, Annotations, Semantics,
Benchmark testing, Object recognition,
grouping and shape
BibRef
Gong, R.[Rui],
Li, W.[Wen],
Chen, Y.H.[Yu-Hua],
Van Gool, L.J.[Luc J.],
DLOW: Domain Flow for Adaptation and Generalization,
CVPR19(2472-2481).
IEEE DOI
2002
BibRef
Bucci, S.[Silvia],
Borlino, F.C.[Francesco Cappio],
Caputo, B.[Barbara],
Tommasi, T.[Tatiana],
Distance-based Hyperspherical Classification for Multi-source
Open-Set Domain Adaptation,
WACV22(1030-1039)
IEEE DOI
2202
Training, Adaptation models, Codes, Machine vision,
Predictive models, Benchmark testing, Transfer, Few-shot,
Semi- and Un- supervised Learning Object Detection/Recognition/Categorization
BibRef
Park, G.Y.[Geon Yeong],
Lee, S.W.[Sang Wan],
Information-theoretic regularization for Multi-source Domain
Adaptation,
ICCV21(9194-9203)
IEEE DOI
2203
Training, Image synthesis, Scalability,
Computer network reliability, Computational modeling, Adversarial learning
BibRef
Xu, Y.Y.[Yuan-Yuan],
Kan, M.[Meina],
Shan, S.G.[Shi-Guang],
Chen, X.L.[Xi-Lin],
Mutual Learning of Joint and Separate Domain Alignments for
Multi-Source Domain Adaptation,
WACV22(1658-1667)
IEEE DOI
2202
Diversity reception, Task analysis, Transfer,
Few-shot, Semi- and Un- supervised Learning
BibRef
Amosy, O.[Ohad],
Chechik, G.[Gal],
Coupled Training for Multi-Source Domain Adaptation,
WACV22(1071-1080)
IEEE DOI
2202
Training, Couplings, Adaptation models,
Analytical models, Benchmark testing, Predictive models, Transfer,
Semi- and Un- supervised Learning
BibRef
Nguyen, V.A.[Van-Anh],
Nguyen, T.[Tuan],
Le, T.[Trung],
Tran, Q.H.[Quan Hung],
Phung, D.[Dinh],
STEM: An approach to Multi-source Domain Adaptation with Guarantees,
ICCV21(9332-9343)
IEEE DOI
2203
Adaptation models, Soft sensors, Computational modeling,
Benchmark testing, Feature extraction, Generators,
BibRef
Qiu, S.H.[Shu-Hao],
Zhu, C.[Chuang],
Zhou, W.L.[Wen-Li],
Meta Self-Learning for Multi-Source Domain Adaptation: A Benchmark,
ILDAV21(1592-1601)
IEEE DOI
2112
Learning systems, Deep learning, Text recognition,
Computational modeling, Training data
BibRef
Montesuma, E.F.[Eduardo Fernandes],
Mboula, F.M.N.[Fred Maurice Ngolè],
Wasserstein Barycenter for Multi-Source Domain Adaptation,
CVPR21(16780-16788)
IEEE DOI
2111
Visualization, Adaptation models,
Face recognition, Probability distribution, Data models, Acoustics
BibRef
Fu, Y.Y.[Yang-Ye],
Zhang, M.[Ming],
Xu, X.[Xing],
Cao, Z.[Zuo],
Ma, C.[Chao],
Ji, Y.L.[Yan-Li],
Zuo, K.[Kai],
Lu, H.M.[Hui-Min],
Partial Feature Selection and Alignment for Multi-Source Domain
Adaptation,
CVPR21(16649-16658)
IEEE DOI
2111
Adaptation models, Correlation, Handheld computers,
Computational modeling, Benchmark testing, Feature extraction
BibRef
Li, Y.S.[Yun-Sheng],
Yuan, L.[Lu],
Chen, Y.P.[Yin-Peng],
Wang, P.[Pei],
Vasconcelos, N.M.[Nuno M.],
Dynamic Transfer for Multi-Source Domain Adaptation,
CVPR21(10993-11002)
IEEE DOI
2111
Degradation, Adaptation models, Codes, Convolution, Pattern recognition
BibRef
Wang, H.[Hang],
Xu, M.H.[Ming-Hao],
Ni, B.B.[Bing-Bing],
Zhang, W.J.[Wen-Jun],
Learning to Combine: Knowledge Aggregation for Multi-source Domain
Adaptation,
ECCV20(VIII:727-744).
Springer DOI
2011
BibRef
Yang, L.[Luyu],
Balaji, Y.[Yogesh],
Lim, S.N.[Ser-Nam],
Shrivastava, A.[Abhinav],
Curriculum Manager for Source Selection in Multi-source Domain
Adaptation,
ECCV20(XIV:608-624).
Springer DOI
2011
BibRef
Li, D.[Da],
Hospedales, T.M.[Timothy M.],
Online Meta-learning for Multi-source and Semi-supervised Domain
Adaptation,
ECCV20(XVI: 382-403).
Springer DOI
2010
BibRef
Yi, H.Y.[Hai-Yang],
Xu, Z.[Zhi],
Wen, Y.M.[Yi-Min],
Fan, Z.G.[Zhi-Gang],
Multi-source Domain Adaptation for Face Recognition,
ICPR18(1349-1354)
IEEE DOI
1812
Face recognition, Image reconstruction, Correlation, Optimization,
Feature extraction, Sparse matrices, Training, domain adaptation,
face recognition
BibRef
Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
Unsupervised Domain Adaptation .