16.7.2.7.4 Missing Data in Traffic Flow, Data Imputation, Prediction, Forecast

Chapter Contents (Back)
Flow Prediction. Traffic Forecast. Traffic Completion. Missing Data. Traffic Flow. General missing data:
See also Missing Data, Fixing Problems.
See also Traffic Flow Models and Analysis, Not Image Based.

Qu, L., Li, L., Zhang, Y., Hu, J.,
PPCA-Based Missing Data Imputation for Traffic Flow Volume: A Systematical Approach,
ITS(10), No. 3, September 2009, pp. 512-522.
IEEE DOI 0909
BibRef

Tak, S., Woo, S., Yeo, H.,
Data-Driven Imputation Method for Traffic Data in Sectional Units of Road Links,
ITS(17), No. 6, June 2016, pp. 1762-1771.
IEEE DOI 1606
Correlation BibRef

Li, L.C.[Lin-Chao], Zhang, J.[Jian], Yang, F.[Fan], Ran, B.[Bin],
Robust and flexible strategy for missing data imputation in intelligent transportation system,
IET-ITS(12), No. 2, March 2018, pp. 151-157.
DOI Link 1801
BibRef

Zhuang, Y.F.[Yi-Fan], Ke, R.M.[Rui-Min], Wang, Y.H.[Yin-Hai],
Innovative method for traffic data imputation based on convolutional neural network,
IET-ITS(13), No. 4, April 2019, pp. 605-613.
DOI Link 1903
BibRef

Rodrigues, F., Henrickson, K., Pereira, F.C.,
Multi-Output Gaussian Processes for Crowdsourced Traffic Data Imputation,
ITS(20), No. 2, February 2019, pp. 594-603.
IEEE DOI 1902
Gaussian processes, Data models, Uncertainty, Probes, Bayes methods, Roads, Predictive models, Traffic data, imputation, missing data, crowdsourced data BibRef

Wang, S., Mao, G.,
Missing Data Estimation for Traffic Volume by Searching an Optimum Closed Cut in Urban Networks,
ITS(20), No. 1, January 2019, pp. 75-86.
IEEE DOI 1901
Roads, Detectors, Correlation, Estimation, Probabilistic logic, Tensile stress, Traffic data imputation, optimum closed cut, NHA, k-NN BibRef

Li, L., Zhang, J., Wang, Y., Ran, B.,
Missing Value Imputation for Traffic-Related Time Series Data Based on a Multi-View Learning Method,
ITS(20), No. 8, August 2019, pp. 2933-2943.
IEEE DOI 1908
Time series analysis, Logic gates, Sensors, Data models, Road transportation, Learning systems, Databases, temporal and spatial views BibRef

Chen, Y., Lv, Y., Wang, F.,
Traffic Flow Imputation Using Parallel Data and Generative Adversarial Networks,
ITS(21), No. 4, April 2020, pp. 1624-1630.
IEEE DOI 2004
Generators, Data models, Generative adversarial networks, Training, Loss measurement, deep learning BibRef

Wang, S., Mao, G.,
Fundamental Limits of Missing Traffic Data Estimation in Urban Networks,
ITS(21), No. 3, March 2020, pp. 1191-1203.
IEEE DOI 2003
Cramer-Rao lower bound (CRLB), squared flow error bound (SFEB), fisher matrix, spatial-temporal kriging BibRef

Lu, W.Q.[Wen-Qi], Zhou, T.[Tian], Li, L.H.[Lin-Heng], Gu, Y.L.[Yuan-Li], Rui, Y.K.[Yi-Kang], Ran, B.[Bin],
An improved tucker decomposition-based imputation method for recovering lane-level missing values in traffic data,
IET-ITS(16), No. 3, 2022, pp. 363-379.
DOI Link 2202
BibRef

Liu, J.L.[Jie-Lun], Ong, G.P.[Ghim Ping], Chen, X.[Xiqun],
GraphSAGE-Based Traffic Speed Forecasting for Segment Network With Sparse Data,
ITS(23), No. 3, March 2022, pp. 1755-1766.
IEEE DOI 2203
Forecasting, Roads, Correlation, Probes, Trajectory, Data models, Predictive models, Urban road network, recovery of missing data, deep learning BibRef

Joelianto, E.[Endra], Fathurrahman, M.F.[Muhammad Farhan], Sutarto, H.Y.[Herman Yoseph], Semanjski, I.[Ivana], Putri, A.[Adiyana], Gautama, S.[Sidharta],
Analysis of Spatiotemporal Data Imputation Methods for Traffic Flow Data in Urban Networks,
IJGI(11), No. 5, 2022, pp. xx-yy.
DOI Link 2206
BibRef

Wang, S.F.[Shao-Fan], Zhao, Y.B.[Yong-Bo], Zhang, Y.[Yong], Hu, Y.L.[Yong-Li], Yin, B.C.[Bao-Cai],
Spatiotemporal traffic data imputation via tensorial weighted Schatten-p norm minimization,
IET-ITS(16), No. 7, 2022, pp. 926-939.
DOI Link 2206
BibRef

Lei, M.Y.[Meng-Ying], Labbe, A.[Aurelie], Wu, Y.K.[Yuan-Kai], Sun, L.J.[Li-Jun],
Bayesian Kernelized Matrix Factorization for Spatiotemporal Traffic Data Imputation and Kriging,
ITS(23), No. 10, October 2022, pp. 18962-18974.
IEEE DOI 2210
Spatiotemporal phenomena, Kernel, Data models, Computational modeling, Task analysis, Correlation, Bayes methods, Markov chain Monte Carlo BibRef

Zhu, Y.T.[Yi-Ting], Wang, J.[Jiyu], Wang, J.[Junbo], He, Z.C.[Zhao-Cheng],
Multitask Neural Tensor Factorization for Road Traffic Speed-Volume Correlation Pattern Learning and Joint Imputation,
ITS(23), No. 12, December 2022, pp. 24550-24560.
IEEE DOI 2212
Tensors, Correlation, Task analysis, Roads, Solid modeling, Detectors, Data models, Multi-task learning, neural tensor factorization, automatic vehicle identification BibRef

Zhang, X.Y.[Xin-Yu], Zhang, Y.[Yong], Wei, X.[Xiulan], Hu, Y.L.[Yong-Li], Yin, B.C.[Bao-Cai],
Traffic forecasting with missing data via low rank dynamic mode decomposition of tensor,
IET-ITS(16), No. 9, 2022, pp. 1164-1176.
DOI Link 2208
BibRef

Zhang, W.B.[Wei-Bin], Zhang, P.[Pulin], Yu, Y.H.[Ying-Hao], Li, X.Y.[Xi-Ying], Biancardo, S.A.[Salvatore Antonio], Zhang, J.Y.[Jun-Yi],
Missing Data Repairs for Traffic Flow With Self-Attention Generative Adversarial Imputation Net,
ITS(23), No. 7, July 2022, pp. 7919-7930.
IEEE DOI 2207
Data models, Time series analysis, Maintenance engineering, Training, Task analysis, Generative adversarial networks, self-attention BibRef

Ben Said, A.[Ahmed], Erradi, A.[Abdelkarim],
Spatiotemporal Tensor Completion for Improved Urban Traffic Imputation,
ITS(23), No. 7, July 2022, pp. 6836-6849.
IEEE DOI 2207
Tensors, Spatiotemporal phenomena, Sparse matrices, Meteorology, Data models, Forecasting, Traffic tensor, tensor completion, CANDECOMP/PARAFAC BibRef

Xing, J.P.[Ji-Ping], Liu, R.H.[Rong-Hui], Anish, K.[Khadka], Liu, Z.Y.[Zhi-Yuan],
A Customized Data Fusion Tensor Approach for Interval-Wise Missing Network Volume Imputation,
ITS(24), No. 11, November 2023, pp. 12107-12122.
IEEE DOI 2311
fill in missing data. BibRef

Wang, A.[Ao], Ye, Y.C.[Yong-Chao], Song, X.Z.[Xiao-Zhuang], Zhang, S.[Shiyao], Yu, J.J.Q.[James J. Q.],
Traffic Prediction With Missing Data: A Multi-Task Learning Approach,
ITS(24), No. 4, April 2023, pp. 4189-4202.
IEEE DOI 2304
Task analysis, Predictive models, Training, Multitasking, Feature extraction, Deep learning, Data mining, multi-task learning BibRef

Miao, M.[Meng], Kang, M.Y.[Ming-Yu], Qian, X.[Xusheng], Chen, D.[Duxin], Wu, W.J.[Wei-Jiang], Yu, W.W.[Wen-Wu],
Improving traffic time-series predictability by imputing continuous non-random missing data,
IET-ITS(17), No. 10, 2023, pp. 1925-1934.
DOI Link 2310
artificial intelligence, big data, intelligent transportation systems, prediction theory BibRef

Cai, L.[Li], Sha, C.[Cong], He, J.[Jing], Yao, S.W.[Shao-Wen],
Spatial-Temporal Data Imputation Model of Traffic Passenger Flow Based on Grid Division,
IJGI(12), No. 1, 2023, pp. xx-yy.
DOI Link 2301
BibRef

Cai, S.[Siteng], Liu, G.[Gang], He, J.[Jing], Du, Y.[Yulun], Si, Z.C.[Zhi-Chao], Jiang, Y.H.[Yun-Hao],
Temporal-Spatial Traffic Flow Prediction Model Based on Prompt Learning,
IJGI(14), No. 1, 2025, pp. 11.
DOI Link 2501
BibRef

Wu, P.L.[Peng-Ling], Ding, M.[Meng], Zheng, Y.B.[Yu-Bang],
Spatiotemporal traffic data imputation by synergizing low tensor ring rank and nonlocal subspace regularization,
IET-ITS(17), No. 9, 2023, pp. 1908-1923.
DOI Link 2310
data analysis, intelligent transportation systems, interpolation, management and control, traffic modeling BibRef

Su, X.[Xing], Sun, W.J.[Wen-Jie], Song, C.[Chenting], Cai, Z.[Zhi], Guo, L.M.[Li-Min],
A Latent-Factor-Model-Based Approach for Traffic Data Imputation with Road Network Information,
IJGI(12), No. 9, 2023, pp. 378.
DOI Link 2310
BibRef

Zeng, Z.[Zeyu], Liu, B.[Bin], Feng, J.[Jun], Yang, X.L.[Xiao-Lin],
Low-Rank Tensor and Hybrid Smoothness Regularization-Based Approach for Traffic Data Imputation With Multimodal Missing,
ITS(25), No. 10, October 2024, pp. 13014-13026.
IEEE DOI 2410
Tensors, Imputation, Spatiotemporal phenomena, Data models, Matrix decomposition, TV, hybrid total variation BibRef

Zeng, Z.[Zeyu], Feng, J.[Jun], Huang, Z.[Zhang], Liu, B.[Bin], Zhou, B.[Bin],
A Flexible Approach Based on Hybrid Global Low-Rankness and Smoothness Regularization With Nonlocal Structure for Traffic Data Imputation,
ITS(26), No. 6, June 2025, pp. 8864-8879.
IEEE DOI 2506
Tensors, Imputation, Correlation, Spatiotemporal phenomena, Data models, Accuracy, Matrix decomposition, Transportation, complex missing data scenarios BibRef

Xu, C.[Chen], Wang, Q.[Qiang], Zhang, W.Q.[Wen-Qi], Sun, C.[Chen],
Spatiotemporal Ego-Graph Domain Adaptation for Traffic Prediction With Data Missing,
ITS(25), No. 12, December 2024, pp. 20804-20819.
IEEE DOI 2412
Adaptation models, Predictive models, Data models, Tensors, Spatiotemporal phenomena, Roads, Feature extraction, domain adaptation BibRef

Zhao, M.[Meng], Gahrooei, M.R.[Mostafa Reisi], Ilbeigi, M.[Mohammad],
Change Detection in Partially Observed Large-Scale Traffic Network Data,
ITS(25), No. 11, November 2024, pp. 18913-18924.
IEEE DOI 2411
Monitoring, Tensors, Spatiotemporal phenomena, Roads, Streams, Imputation, Traffic control, statistical monitoring BibRef

Huo, G.Y.[Guang-Yu], Zhang, Y.[Yong], Wang, B.Y.[Bo-Yue], Gao, J.B.[Jun-Bin], Hu, Y.L.[Yong-Li], Yin, B.C.[Bao-Cai],
Hierarchical Spatio-Temporal Graph Convolutional Networks and Transformer Network for Traffic Flow Forecasting,
ITS(24), No. 4, April 2023, pp. 3855-3867.
IEEE DOI 2304
Forecasting, Transformers, Convolution, Roads, Task analysis, Predictive models, Network topology, transformer BibRef

Guo, K.[Kan], Tian, D.X.[Da-Xin], Hu, Y.L.[Yong-Li], Sun, Y.F.[Yan-Feng], Qian, Z.S.[Zhen Sean], Zhou, J.[Jianshan], Gao, J.B.[Jun-Bin], Yin, B.C.[Bao-Cai],
Contrastive learning for traffic flow forecasting based on multi graph convolution network,
IET-ITS(18), No. 2, 2024, pp. 290-301.
DOI Link 2402
intelligent transportation systems, traffic information systems BibRef

Hu, Y.L.[Yong-Li], Peng, T.[Ting], Guo, K.[Kan], Sun, Y.F.[Yan-Feng], Gao, J.B.[Jun-Bin], Yin, B.C.[Bao-Cai],
Graph transformer based dynamic multiple graph convolution networks for traffic flow forecasting,
IET-ITS(17), No. 9, 2023, pp. 1835-1845.
DOI Link 2310
intelligent transportation systems, traffic information systems BibRef

Guo, K.[Kan], Hu, Y.L.[Yong-Li], Qian, Z.[Zhen], Sun, Y.F.[Yan-Feng], Gao, J.B.[Jun-Bin], Yin, B.C.[Bao-Cai],
Dynamic Graph Convolution Network for Traffic Forecasting Based on Latent Network of Laplace Matrix Estimation,
ITS(23), No. 2, February 2022, pp. 1009-1018.
IEEE DOI 2202
Forecasting, Roads, Convolution, Feature extraction, Data models, Artificial neural networks, Dynamic graph convolution network, Laplace matrix latent network BibRef

Wei, X.[Xiulan], Zhang, Y.[Yong], Wang, S.F.[Shao-Fan], Zhao, X.[Xia], Hu, Y.L.[Yong-Li], Yin, B.C.[Bao-Cai],
Self-Attention Graph Convolution Imputation Network for Spatio-Temporal Traffic Data,
ITS(25), No. 12, December 2024, pp. 19549-19562.
IEEE DOI 2412
Imputation, Convolution, Data models, Time series analysis, Interpolation, Deep learning, Correlation, Learning systems, diffusion graph convolution BibRef

Yang, H.S.[Heng-Shuo], Lin, M.W.[Ming-Wei], Chen, H.[Hong], Luo, X.[Xin], Xu, Z.[Zeshui],
Latent Factor Analysis Model With Temporal Regularized Constraint for Road Traffic Data Imputation,
ITS(26), No. 1, January 2025, pp. 724-741.
IEEE DOI 2501
Imputation, Data models, Tensors, Analytical models, Training, Convergence, Time series analysis, Accuracy, Matrix decomposition, latent factor analysis BibRef

Chen, P.[Peng], Li, F.[Fang], Wei, D.L.[De-Liang], Lu, C.H.[Chang-Hong],
Low-Rank and Deep Plug-and-Play Priors for Missing Traffic Data Imputation,
ITS(26), No. 2, February 2025, pp. 2690-2706.
IEEE DOI Code:
WWW Link. 2502
Tensors, Imputation, Spatiotemporal phenomena, Data models, Deep learning, Iterative methods, Accuracy, Correlation, low-rank tensor completion BibRef

Dong, H.X.[Han-Xuan], Zhang, H.L.[Hai-Long], Ding, F.[Fan], Tan, H.C.[Hua-Chun],
Co-Evolving Traffic State Parameters Prediction Based on Mechanism-Data Blending Driven Deep Learning,
ITS(26), No. 3, March 2025, pp. 3084-3100.
IEEE DOI 2503
Tensors, Time series analysis, Data models, Roads, Deep learning, Predictive models, Accuracy, Prediction algorithms, Detectors, data missing BibRef

Sabzekar, S.[Sina], Roudbari, A.[Asal], Dehghani, A.[Arash], Safaeiestalkhzir, A.[Artin], Amini, Z.[Zahra],
The Impact of Network Indices Integration on Traffic Flow Imputation Accuracy: A Machine Learning Approach,
ITS(26), No. 4, April 2025, pp. 5411-5421.
IEEE DOI 2504
Roads, Imputation, Accuracy, Machine learning, Feature extraction, Transportation, Deep learning, Correlation, Training, Resilience, machine learning BibRef

Chen, H.[Hong], Lin, M.W.[Ming-Wei], Zhao, L.[Liang], Xu, Z.[Zeshui], Luo, X.[Xin],
Fourth-Order Dimension Preserved Tensor Completion With Temporal Constraint for Missing Traffic Data Imputation,
ITS(26), No. 5, May 2025, pp. 6734-6748.
IEEE DOI 2505
Imputation, Accuracy, Tensors, Data models, Computational modeling, Time series analysis, Matrix decomposition, Interpolation, temporal constraint BibRef

Cao, S.[Shan], Song, C.Y.[Chun-Yue], Zhang, J.[Jie], Zhang, X.[Xiangrui],
Road Network Similarity-Based Transfer Learning Method for Traffic Volume Estimation in Undetected Road Segments,
ITS(26), No. 6, June 2025, pp. 7700-7714.
IEEE DOI 2506
Roads, Transfer learning, Estimation, Volume measurement, Detectors, Computational modeling, Urban areas, Solid modeling, transfer learning BibRef

Yu, L.F.[Lin-Fang], Guan, C.Y.[Chen-Yu], Wang, H.[Hao], He, Y.X.[Yu-Xin], Cao, W.M.[Wen-Ming], Leung, C.S.[Chi-Sing],
Robust Tensor Ring Decomposition for Urban Traffic Data Imputation,
ITS(26), No. 6, June 2025, pp. 8707-8719.
IEEE DOI Code:
WWW Link. 2506
Tensors, Imputation, Noise, Matrix decomposition, Spatiotemporal phenomena, Optimization, Transportation, AO-ADMM BibRef

Zhou, W.F.[Wen-Feng], Shen, G.J.[Guo-Jiang], Zhang, Y.M.[Yi-Mei], Deng, Z.L.[Zhao-Lin], Kong, X.J.[Xiang-Jie], Xia, F.[Feng],
Sequence-to-Sequence Traffic Missing Data Imputation via Self-Supervised Contrastive Learning,
ITS(26), No. 7, July 2025, pp. 9948-9961.
IEEE DOI 2507
Data models, Imputation, Spatiotemporal phenomena, Contrastive learning, Training, Deep learning, Decoding, self-supervised contrastive learning BibRef

Yoon, C.[Chanyoung], Yim, S.[Soobin], Yoo, S.[Sangbong], Jung, C.[Chanyoung], Yeon, H.[Hanbyul], Jang, Y.[Yun],
V-DCRNN: Virtual Network-Based Diffusion Convolutional Recurrent Neural Network for Estimating Unobserved Traffic Data,
ITS(26), No. 7, July 2025, pp. 10336-10352.
IEEE DOI 2507
Data models, Spatiotemporal phenomena, Global Positioning System, Tensors, Reliability, Imputation, Deep learning, diffusion convolutional recurrent neural network BibRef


Chapter on Motion -- Feature-Based, Long Range, Motion and Structure Estimates, Tracking, Surveillance, Activities continues in
Traffic Origin-Destination Analysis .


Last update:Oct 6, 2025 at 14:07:43