16.7.2.7.8 On-Demand Ride Systems, Car Sharing, Taxi, Analysis

Chapter Contents (Back)
Vehicle Sharing. On-Demand Rides. Ride Sharing.

Rigas, E.S.[Emmanouil S.], Ramchurn, S.D.[Sarvapali D.], Bassiliades, N.[Nick],
Algorithms for electric vehicle scheduling in large-scale mobility-on-demand schemes,
AI(262), 2018, pp. 248-278.
Elsevier DOI 1809
Mixed integer programming, Heuristic search, Local search, Max-flow, Electric vehicles, Shared vehicles, Mobility on demand BibRef

Guo, S.[Suiming], Chen, C.[Chao], Liu, Y.X.[Ya-Xiao], Xu, K.[Ke], Guo, B.[Bin], Chiu, D.M.[Dah Ming],
How to pay less: a location-specific approach to predict dynamic prices in ride-on-demand services,
IET-ITS(12), No. 7, September 2018, pp. 610-618.
DOI Link 1808
BibRef

Drakoulis, R., Bellotti, F., Bakas, I., Berta, R., Paranthaman, P.K., Dange, G.R., Lytrivis, P., Pagle, K., de Gloria, A., Amditis, A.,
A Gamified Flexible Transportation Service for On-Demand Public Transport,
ITS(19), No. 3, March 2018, pp. 921-933.
IEEE DOI 1804
Games, Linear programming, Public transportation, Urban areas, Vehicle dynamics, serious game BibRef

Wang, L.[Lei], Zhong, Y.[Yugao], Ma, W.[Wanjing],
GPS-data-driven dynamic destination prediction for on-demand one-way carsharing system,
IET-ITS(12), No. 10, December 2018, pp. 1291-1299.
DOI Link 1812
BibRef

Egan, M., Oren, N., Jakob, M.,
Hybrid Mechanisms for On-Demand Transport,
ITS(20), No. 12, December 2019, pp. 4500-4512.
IEEE DOI 2001
Pricing, Public transportation, Vehicles, Routing, Probability density function, Urban areas, Resource management, pricing BibRef

Yu, X., Shen, S.,
An Integrated Decomposition and Approximate Dynamic Programming Approach for On-Demand Ride Pooling,
ITS(21), No. 9, September 2020, pp. 3811-3820.
IEEE DOI 2008
Vehicles, Delays, Computational modeling, Optimization, Vehicle dynamics, Stochastic processes, Dynamic programming, approximate dynamic programming BibRef

Salazar, M., Lanzetti, N., Rossi, F., Schiffer, M., Pavone, M.,
Intermodal Autonomous Mobility-on-Demand,
ITS(21), No. 9, September 2020, pp. 3946-3960.
IEEE DOI 2008
Roads, Pricing, Public transportation, Optimization, Urban areas, Legged locomotion, Autonomous vehicles, networks, optimization, public transportation BibRef

Chu, K.F.[Kai-Fung], Lam, A.Y.S.[Albert Y. S.], Li, V.O.K.[Victor O. K.],
Joint Rebalancing and Vehicle-to-Grid Coordination for Autonomous Vehicle Public Transportation System,
ITS(23), No. 7, July 2022, pp. 7156-7169.
IEEE DOI 2207
Vehicle-to-grid, Schedules, Roads, Public transportation, Genetic algorithms, Autonomous vehicles, Predictive models, autonomous mobility-on-demand systems BibRef

Huang, H.P.[Hai-Ping], Hu, C.X.[Cheng-Xi], Zhu, J.[Jie], Wu, M.[Min], Malekian, R.[Reza],
Stochastic Task Scheduling in UAV-Based Intelligent On-Demand Meal Delivery System,
ITS(23), No. 8, August 2022, pp. 13040-13054.
IEEE DOI 2208
Task analysis, Heuristic algorithms, Routing, Costs, Vehicle dynamics, Stochastic processes, Logistics, UAV, rescheduling strategy BibRef

Liu, Y.[Yang], Samaranayake, S.[Samitha],
Proactive Rebalancing and Speed-Up Techniques for On-Demand High Capacity Ridesourcing Services,
ITS(23), No. 2, February 2022, pp. 819-826.
IEEE DOI 2202
Delays, Public transportation, Probabilistic logic, Routing, Real-time systems, System performance, Ridesourcing, proactive rebalancing BibRef

Qian, X.[Xinwu], Ukkusuri, S.V.[Satish V.], Yang, C.[Chao], Yan, F.F.[Fen-Fan],
Short-Term Demand Forecasting for on-Demand Mobility Service,
ITS(23), No. 2, February 2022, pp. 1019-1029.
IEEE DOI 2202
Public transportation, Correlation, Predictive models, Urban areas, Data models, Spatiotemporal phenomena, Machine learning, boosting Gaussian conditional random field BibRef

Chen, R.[Rui], Cassandras, C.G.[Christos G.],
Optimal Assignments in Mobility-on-Demand Systems Using Event-Driven Receding Horizon Control,
ITS(23), No. 3, March 2022, pp. 1969-1983.
IEEE DOI 2203
Complexity theory, Vehicle dynamics, Real-time systems, Optimization, Urban areas, Public transportation, vehicle assignments BibRef

Huang, X.[Xianan], Li, B.Q.[Bo-Qi], Peng, H.[Huei], Auld, J.A.[Joshua A.], Sokolov, V.O.[Vadim O.],
Eco-Mobility-on-Demand Fleet Control With Ride-Sharing,
ITS(23), No. 4, April 2022, pp. 3158-3168.
IEEE DOI 2204
Fuels, Time factors, Optimization, Heuristic algorithms, Routing, Delays, Transportation, Connected automated vehicle, ride-sharing BibRef

Javanshour, F.[Farid], Dia, H.[Hussein], Duncan, G.[Gordon], Abduljabbar, R.[Rusul], Liyanage, S.[Sohani],
Performance Evaluation of Station-Based Autonomous On-Demand Car-Sharing Systems,
ITS(23), No. 7, July 2022, pp. 7721-7732.
IEEE DOI 2207
Vehicle dynamics, Urban areas, Roads, Public transportation, Optimization, Heuristic algorithms, Autonomous vehicles, shared autonomous mobility-on-demand BibRef

Ni, L.[Liang], Sun, B.[Bo], Wang, S.[Su], Tsang, D.H.K.[Danny H. K.],
Dynamic Pricing Mechanism Design for Electric Mobility-on-Demand Systems,
ITS(23), No. 8, August 2022, pp. 11361-11375.
IEEE DOI 2208
Pricing, Decision making, Real-time systems, Dispatching, Vehicle dynamics, Routing, Reinforcement learning, sequential decision-making BibRef

Wollenstein-Betech, S.[Salomón], Salazar, M.[Mauro], Houshmand, A.[Arian], Pavone, M.[Marco], Paschalidis, I.C.[Ioannis Ch.], Cassandras, C.G.[Christos G.],
Routing and Rebalancing Intermodal Autonomous Mobility-on-Demand Systems in Mixed Traffic,
ITS(23), No. 8, August 2022, pp. 12263-12275.
IEEE DOI 2208
Routing, Legged locomotion, Vehicles, Urban areas, Switches, Roads, Real-time systems, Mobility-on-demand, system-optimal routing, mixed autonomy BibRef

Xu, S.J.[Susan Jia], Chow, J.Y.J.[Joseph Y. J.],
Online Route Choice Modeling for Mobility-as-a-Service Networks With Non-Separable, Congestible Link Capacity Effects,
ITS(23), No. 8, August 2022, pp. 11518-11527.
IEEE DOI 2208
Vehicle dynamics, Numerical models, Data models, Biological system modeling, Urban areas, Real-time systems, online route choice model BibRef

Perboli, G.[Guido], Rosano, M.[Mariangela], Wei, Q.[Qu],
A Simulation-Optimization Approach for the Management of the On-Demand Parcel Delivery in Sharing Economy,
ITS(23), No. 8, August 2022, pp. 10570-10582.
IEEE DOI 2208
Stochastic processes, Urban areas, Vehicles, Logistics, Vehicle dynamics, Companies, Green products, Crowdsourcing, stochastic and dynamic VRPTW BibRef

Xi, J.H.[Jin-Hao], Zhu, F.H.[Feng-Hua], Ye, P.J.[Pei-Jun], Lv, Y.S.[Yi-Sheng], Tang, H.[Haina], Wang, F.Y.[Fei-Yue],
HMDRL: Hierarchical Mixed Deep Reinforcement Learning to Balance Vehicle Supply and Demand,
ITS(23), No. 11, November 2022, pp. 21861-21872.
IEEE DOI 2212
Reinforcement learning, Pricing, Heuristic algorithms, Supply and demand, Surges, Vehicle dynamics, Vehicles, mixed state BibRef

Hüttel, F.B.[Frederik Boe], Peled, I.[Inon], Rodrigues, F.[Filipe], Pereira, F.C.[Francisco C.],
Modeling Censored Mobility Demand Through Censored Quantile Regression Neural Networks,
ITS(23), No. 11, November 2022, pp. 21753-21765.
IEEE DOI 2212
Computational modeling, Data models, Biological neural networks, Uncertainty, Computer architecture, Censorship, Bayes methods, Bayesian modeling BibRef

Liang, Y.Y.[Yun-Yi], Wu, Z.Z.[Zhi-Zhou], Yang, H.C.[Hao-Chun], Wang, Y.H.[Yin-Hai],
A Novel Framework for Road Side Unit Location Optimization for Origin-Destination Demand Estimation,
ITS(23), No. 11, November 2022, pp. 21113-21126.
IEEE DOI 2212
Optimization, Estimation, Delays, Connected vehicles, Transportation, Roads, Pareto optimization, Sensor location, road side unit, origin-destination demand estimation BibRef

Huang, Z.H.[Zi-Heng], Wang, D.[Dujuan], Yin, Y.Q.[Yun-Qiang], Li, X.[Xiang],
A Spatiotemporal Bidirectional Attention-Based Ride-Hailing Demand Prediction Model: A Case Study in Beijing During COVID-19,
ITS(23), No. 12, December 2022, pp. 25115-25126.
IEEE DOI 2212
Predictive models, Spatiotemporal phenomena, Correlation, Deep learning, Epidemics, COVID-19, Neural networks, multi-steps ahead prediction BibRef

Liu, K.[Kai], Chen, Z.[Zhiju], Yamamoto, T.[Toshiyuki], Tuo, L.[Liheng],
Exploring the Impact of Spatiotemporal Granularity on the Demand Prediction of Dynamic Ride-Hailing,
ITS(24), No. 1, January 2023, pp. 104-114.
IEEE DOI 2301
Spatiotemporal phenomena, Predictive models, Deep learning, Time series analysis, Public transportation, Data models, optimal granularity BibRef

Poliziani, C.[Cristian], Hsueh, G.[Gary], Czerwinski, D.[David], Wenzel, T.[Tom], Needell, Z.[Zachary], Laarabi, H.[Haitam], Schweizer, J.[Joerg], Rupi, F.[Federico],
Micro Transit Simulation of On-Demand Shuttles Based on Transit Data for First- and Last-Mile Connection,
IJGI(12), No. 4, 2023, pp. 177.
DOI Link 2305
BibRef

Guo, S.[Suiming], Shen, Q.[Qianrong], Liu, Z.Q.[Zhi-Quan], Chen, C.[Chao], Chen, C.X.[Chao-Xiong], Wang, J.Y.[Jing-Yuan], Li, Z.[Zhetao], Xu, K.[Ke],
Seeking Based on Dynamic Prices: Higher Earnings and Better Strategies in Ride-on-Demand Services,
ITS(24), No. 5, May 2023, pp. 5527-5542.
IEEE DOI 2305
Vehicles, Public transportation, Pricing, Global Positioning System, Trajectory, Urban areas, reinforcement learning BibRef


Chapter on Motion -- Feature-Based, Long Range, Motion and Structure Estimates, Tracking, Surveillance, Activities continues in
Bicycle Sharing, Bicycle Commuting, Bike Sharing .


Last update:Jun 1, 2023 at 10:05:03