Elnagar, A.,
Gupta, K.,
Motion Prediction of Moving Objects Based on Autoregressive Model,
SMC-A(28), No. 6, November 1998, pp. 803-810.
IEEE Top Reference.
BibRef
9811
Macwan, A.,
Nejat, G.,
Benhabib, B.,
Target-Motion Prediction for Robotic Search and Rescue in Wilderness
Environments,
SMC-B(41), No. 5, October 2011, pp. 1287-1298.
IEEE DOI
1110
BibRef
Macwan, A.,
Vilela, J.,
Nejat, G.,
Benhabib, B.,
A Multirobot Path-Planning Strategy for Autonomous Wilderness Search
and Rescue,
Cyber(45), No. 9, September 2015, pp. 1784-1797.
IEEE DOI
1509
multi-robot systems
BibRef
Lin, L.[Lili],
Wey, I.C.[I-Chyn],
Ding, J.H.[Jing-Hua],
Fast predictive motion estimation algorithm with adaptive search mode
based on motion type classification,
SIViP(10), No. 1, January 2016, pp. 171-180.
WWW Link.
1601
BibRef
Gan, W.H.[Wei-Hao],
Lee, M.S.[Ming-Sui],
Wu, C.H.[Chi-Hao],
Kuo, C.C.J.[C.C. Jay],
Object tracking with temporal prediction and spatial refinement
(TPSR),
SP:IC(47), No. 1, 2016, pp. 303-312.
Elsevier DOI
1610
Visual object tracking
BibRef
Gan, W.H.[Wei-Hao],
Lee, M.S.[Ming-Sui],
Wu, C.H.[Chi-Hao],
Kuo, C.C.J.[C.C. Jay],
Online object tracking via motion-guided convolutional neural network
(MGNet),
JVCIR(53), 2018, pp. 180-191.
Elsevier DOI
1805
Object tracking, Online tracking, Convolutional neural network,
Optical flow, Multi-domain learning
BibRef
Huang, S.Y.[Si-Yu],
Li, X.[Xi],
Zhang, Z.F.[Zhong-Fei],
He, Z.Z.[Zhou-Zhou],
Wu, F.[Fei],
Liu, W.[Wei],
Tang, J.H.[Jin-Hui],
Zhuang, Y.T.[Yue-Ting],
Deep Learning Driven Visual Path Prediction From a Single Image,
IP(25), No. 12, December 2016, pp. 5892-5904.
IEEE DOI
1612
feature extraction
BibRef
Liang, N.,
Wu, G.,
Kang, W.,
Wang, Z.,
Feng, D.D.,
Real-Time Long-Term Tracking With Prediction-Detection-Correction,
MultMed(20), No. 9, September 2018, pp. 2289-2302.
IEEE DOI
1809
computational complexity, image motion analysis,
learning (artificial intelligence), object detection,
dual SVMs
BibRef
Wang, J.Z.[Jin-Zhuo],
Wang, W.M.[Wen-Min],
Gao, W.[Wen],
Predicting Diverse Future Frames With Local Transformation-Guided
Masking,
CirSysVideo(29), No. 12, December 2019, pp. 3531-3543.
IEEE DOI
1912
Predictive models, Generators, Task analysis, Visualization,
Computational modeling, Complexity theory, Training,
video prediction on single frame
BibRef
Chen, R.[Rui],
Chen, M.J.[Ming-Jian],
Li, W.L.[Wan-Li],
Guo, N.K.[Nai-Kun],
Predicting Future Locations of Moving Objects by Recurrent Mixture
Density Network,
IJGI(9), No. 2, 2020, pp. xx-yy.
DOI Link
2003
BibRef
Zhang, K.[Kunpeng],
Feng, X.L.[Xiao-Liang],
Wu, L.[Lan],
He, Z.B.[Zheng-Bing],
Trajectory Prediction for Autonomous Driving Using Spatial-Temporal
Graph Attention Transformer,
ITS(23), No. 11, November 2022, pp. 22343-22353.
IEEE DOI
2212
Trajectory, Roads, Predictive models, Transformers,
Feature extraction, Geometry, Autonomous vehicles,
spatial-temporal interaction
BibRef
Hu, H.N.[Hou-Ning],
Yang, Y.H.[Yung-Hsu],
Fischer, T.[Tobias],
Darrell, T.J.[Trevor J.],
Yu, F.[Fisher],
Sun, M.[Min],
Monocular Quasi-Dense 3D Object Tracking,
PAMI(45), No. 2, February 2023, pp. 1992-2008.
IEEE DOI
2301
Object detection, Object tracking, Benchmark testing, Trajectory,
Autonomous vehicles, Target tracking, Monocular 3D detection,
quasi-dense similarity learning
BibRef
Gao, H.[Hang],
Xu, H.Z.[Hua-Zhe],
Cai, Q.Z.[Qi-Zhi],
Wang, R.[Ruth],
Yu, F.[Fisher],
Darrell, T.J.[Trevor J.],
Disentangling Propagation and Generation for Video Prediction,
ICCV19(9005-9014)
IEEE DOI
2004
image colour analysis, image motion analysis, image resolution,
image sequences, learning (artificial intelligence), neural nets,
Standards
BibRef
Nawhal, M.[Megha],
Jyothi, A.A.[Akash Abdu],
Mori, G.[Greg],
Rethinking Learning Approaches for Long-Term Action Anticipation,
ECCV22(XXXIV:558-576).
Springer DOI
2211
BibRef
Epstein, D.[Dave],
Wu, J.J.[Jia-Jun],
Schmid, C.[Cordelia],
Sun, C.[Chen],
Learning Temporal Dynamics from Cycles in Narrated Video,
ICCV21(1460-1469)
IEEE DOI
2203
Training, Visualization, Computational modeling,
Predictive models, Data models,
Video analysis and understanding
BibRef
Tanke, J.[Julian],
Zaveri, C.[Chintan],
Gall, J.[Juergen],
Intention-based Long-Term Human Motion Anticipation,
3DV21(596-605)
IEEE DOI
2201
Measurement, Uncertainty, Forecasting, pose forecasting, human motion
BibRef
Behrmann, N.[Nadine],
Gall, J.[Juergen],
Noroozi, M.[Mehdi],
Unsupervised Video Representation Learning by Bidirectional Feature
Prediction,
WACV21(1669-1678)
IEEE DOI
2106
Prediction methods, Encoding, Task analysis
BibRef
Liu, Y.[Yuan],
Li, R.[Ruoteng],
Cheng, Y.[Yu],
Tan, R.T.[Robby T.],
Sui, X.[Xiubao],
Object Tracking Using Spatio-temporal Networks for Future Prediction
Location,
ECCV20(XXII:1-17).
Springer DOI
2011
BibRef
Šaric, J.,
Oršic, M.,
Antunovic, T.,
Vražic, S.,
Šegvic, S.,
Warp to the Future: Joint Forecasting of Features and Feature Motion,
CVPR20(10645-10654)
IEEE DOI
2008
Forecasting, Semantics, Adaptive optics, Optical imaging,
Predictive models, Correlation, Casting
BibRef
Rempe, D.[Davis],
Sridhar, S.[Srinath],
Wang, H.[He],
Guibas, L.J.[Leonidas J.],
Predicting the Physical Dynamics of Unseen 3D Objects,
WACV20(2823-2832)
IEEE DOI
2006
Shape, Dynamics, Friction, Angular velocity, Robots
BibRef
Ho, Y.,
Cho, C.,
Jin, G.,
Peng, W.,
SME-Net: Sparse Motion Estimation for Parametric Video Prediction
Through Reinforcement Learning,
ICCV19(10461-10469)
IEEE DOI
2004
data compression, image sequences,
learning (artificial intelligence), motion compensation,
BibRef
Hu, Z.,
Wang, J.,
A Novel Adversarial Inference Framework for Video Prediction with
Action Control,
SDL-CV19(768-772)
IEEE DOI
2004
image motion analysis, image representation,
image segmentation, image sequences, neural nets, Cycle Consistent
BibRef
Hoyer, L.,
Kesper, P.,
Khoreva, A.,
Fischer, V.,
Short-Term Prediction and Multi-Camera Fusion on Semantic Grids,
CVRSUAD19(813-821)
IEEE DOI
2004
cameras, decision making, image fusion,
image segmentation, image sequences, motion estimation,
environment representation
BibRef
Sadeghian, A.[Amir],
Kosaraju, V.[Vineet],
Sadeghian, A.[Ali],
Hirose, N.[Noriaki],
Rezatofighi, H.[Hamid],
Savarese, S.[Silvio],
SoPhie: An Attentive GAN for Predicting Paths Compliant to Social and
Physical Constraints,
CVPR19(1349-1358).
IEEE DOI
2002
BibRef
Zhu, D.[Deyao],
Munderloh, M.[Marco],
Rosenhahn, B.[Bodo],
Stückler, J.[Jörg],
Learning to Disentangle Latent Physical Factors for Video Prediction,
GCPR19(595-608).
Springer DOI
1911
BibRef
Baik, S.,
Kwon, J.,
Lee, K.M.,
Learning to Remember Past to Predict Future for Visual Tracking,
ICIP19(3068-3072)
IEEE DOI
1910
tracking, neural network
BibRef
Singh, G.[Gurkirt],
Saha, S.[Suman],
Cuzzolin, F.[Fabio],
Predicting Action Tubes,
AnticipateBeh18(III:106-123).
Springer DOI
1905
BibRef
Terwilliger, A.[Adam],
Brazil, G.[Garrick],
Liu, X.M.[Xiao-Ming],
Recurrent Flow-Guided Semantic Forecasting,
WACV19(1703-1712)
IEEE DOI
1904
Predict future motion.
image motion analysis, image segmentation, image sequences,
learning (artificial intelligence),
Predictive models
BibRef
Vukotic, V.[Vedran],
Pintea, S.L.[Silvia-Laura],
Raymond, C.[Christian],
Gravier, G.[Guillaume],
van Gemert, J.C.[Jan C.],
One-Step Time-Dependent Future Video Frame Prediction with a
Convolutional Encoder-Decoder Neural Network,
CIAP17(I:140-151).
Springer DOI
1711
BibRef
Vondrick, C.[Carl],
Torralba, A.B.[Antonio B.],
Generating the Future with Adversarial Transformers,
CVPR17(2992-3000)
IEEE DOI
1711
Generators, Network architecture, Predictive models, Robots,
Semantics, Spatial resolution, Visualization
BibRef
Zhou, Y.P.[Yi-Pin],
Berg, T.L.[Tamara L.],
Learning Temporal Transformations from Time-Lapse Videos,
ECCV16(VIII: 262-277).
Springer DOI
1611
Predict the changes like people do.
BibRef
Mottaghi, R.[Roozbeh],
Bagherinezhad, H.,
Rastegari, M.[Mohammad],
Farhadi, A.[Ali],
Newtonian Image Understanding: Unfolding the Dynamics of Objects in
Static Images,
CVPR16(3521-3529)
IEEE DOI
1612
BibRef
Mottaghi, R.[Roozbeh],
Rastegari, M.[Mohammad],
Gupta, A.[Abhinav],
Farhadi, A.[Ali],
'What Happens If...' Learning to Predict the Effect of Forces in Images,
ECCV16(IV: 269-285).
Springer DOI
1611
BibRef
Ballan, L.[Lamberto],
Castaldo, F.[Francesco],
Alahi, A.[Alexandre],
Palmieri, F.[Francesco],
Savarese, S.[Silvio],
Knowledge Transfer for Scene-Specific Motion Prediction,
ECCV16(I: 697-713).
Springer DOI
1611
BibRef
Rodriguez, C.[Cristian],
Fernando, B.[Basura],
Li, H.D.[Hong-Dong],
Action Anticipation by Predicting Future Dynamic Images,
AnticipateBeh18(III:89-105).
Springer DOI
1905
BibRef
Li, Z.C.[Zhi-Cheng],
Qiao, B.[Bing],
Deng, S.B.[Shao-Bin],
Color-Based Visual Object Tracking with Prediction and Error Judgment,
CISP09(1-4).
IEEE DOI
0910
BibRef
Rajpurohit, V.S.[Vijay S.],
Pai, M.M.M.[M. M. Manohara],
An Optimized Fuzzy Based Short Term Object Motion Prediction for
Real-Life Robot Navigation Environment,
Visual08(xx-yy).
Springer DOI
0809
BibRef
Gupta, N.,
Mittal, P.,
Patwardhan, K.S.,
Roy, S.D.,
Chaudhury, S.,
Banerjee, S.,
On line predictive appearance-based tracking,
ICIP04(II: 1041-1044).
IEEE DOI
0505
BibRef
Zhou, K.[Kun],
Dai, Q.H.[Qiong-Hai],
Wu, J.[Jiang],
Er, G.H.[Gui-Hua],
Fast tracking of semantic video object based on motion prediction and
subregion extraction,
ICIP02(III: 621-624).
IEEE DOI
0210
BibRef
Chapter on Motion -- Feature-Based, Long Range, Motion and Structure Estimates, Tracking, Surveillance, Activities continues in
Target Tracking Techniques, Prediction, Trajectory Based .