Franceschini, M.H.D.[Marston Héracles Domingues],
Bartholomeus, H.[Harm],
van Apeldoorn, D.F.[Dirk Frederik],
Suomalainen, J.[Juha],
Kooistra, L.[Lammert],
Feasibility of Unmanned Aerial Vehicle Optical Imagery for Early
Detection and Severity Assessment of Late Blight in Potato,
RS(11), No. 3, 2019, pp. xx-yy.
DOI Link
1902
BibRef
Gold, K.M.[Kaitlin M.],
Townsend, P.A.[Philip A.],
Chlus, A.[Adam],
Herrmann, I.[Ittai],
Couture, J.J.[John J.],
Larson, E.R.[Eric R.],
Gevens, A.J.[Amanda J.],
Hyperspectral Measurements Enable Pre-Symptomatic Detection and
Differentiation of Contrasting Physiological Effects of Late Blight
and Early Blight in Potato,
RS(12), No. 2, 2020, pp. xx-yy.
DOI Link
2001
BibRef
Clevers, J.G.P.W.[Jan G.P.W.],
Kooistra, L.[Lammert],
van den Brande, M.M.M.[Marnix M. M.],
Using Sentinel-2 Data for Retrieving LAI and Leaf and Canopy
Chlorophyll Content of a Potato Crop,
RS(9), No. 5, 2017, pp. xx-yy.
DOI Link
1706
BibRef
Liu, N.[Ning],
Xing, Z.Z.[Zi-Zheng],
Zhao, R.M.[Ruo-Mei],
Qiao, L.[Lang],
Li, M.[Minzan],
Liu, G.[Gang],
Sun, H.[Hong],
Analysis of Chlorophyll Concentration in Potato Crop by Coupling
Continuous Wavelet Transform and Spectral Variable Optimization,
RS(12), No. 17, 2020, pp. xx-yy.
DOI Link
2009
BibRef
Duarte-Carvajalino, J.M.[Julio M.],
Alzate, D.F.[Diego F.],
Ramirez, A.A.[Andrés A.],
Santa-Sepulveda, J.D.[Juan D.],
Fajardo-Rojas, A.E.[Alexandra E.],
Soto-Suárez, M.[Mauricio],
Evaluating Late Blight Severity in Potato Crops Using Unmanned Aerial
Vehicles and Machine Learning Algorithms,
RS(10), No. 10, 2018, pp. xx-yy.
DOI Link
1811
BibRef
Teng, P.[Poching],
Ono, E.[Eiichi],
Zhang, Y.[Yu],
Aono, M.[Mitsuko],
Shimizu, Y.[Yo],
Hosoi, F.[Fumiki],
Omasa, K.[Kenji],
Estimation of Ground Surface and Accuracy Assessments of Growth
Parameters for a Sweet Potato Community in Ridge Cultivation,
RS(11), No. 12, 2019, pp. xx-yy.
DOI Link
1907
BibRef
Fernández, C.I.[Claudio Ignacio],
Leblon, B.[Brigitte],
Haddadi, A.[Ata],
Wang, K.[Keri],
Wang, J.F.[Jin-Fei],
Potato Late Blight Detection at the Leaf and Canopy Levels Based in
the Red and Red-Edge Spectral Regions,
RS(12), No. 8, 2020, pp. xx-yy.
DOI Link
2004
BibRef
Li, B.[Bo],
Xu, X.M.[Xiang-Ming],
Zhang, L.[Li],
Han, J.[Jiwan],
Bian, C.S.[Chun-Song],
Li, G.C.[Guang-Cun],
Liu, J.G.[Jian-Gang],
Jin, L.P.[Li-Ping],
Above-ground biomass estimation and yield prediction in potato by
using UAV-based RGB and hyperspectral imaging,
PandRS(162), 2020, pp. 161-172.
Elsevier DOI
2004
Unmanned aerial vehicle, Hyperspectral imaging, Potato,
Above-ground biomass, Yield prediction
BibRef
Afzaal, H.[Hassan],
Farooque, A.A.[Aitazaz A.],
Schumann, A.W.[Arnold W.],
Hussain, N.[Nazar],
McKenzie-Gopsill, A.[Andrew],
Esau, T.[Travis],
Abbas, F.[Farhat],
Acharya, B.[Bishnu],
Detection of a Potato Disease (Early Blight) Using Artificial
Intelligence,
RS(13), No. 3, 2021, pp. xx-yy.
DOI Link
2102
BibRef
Roosjen, P.P.J.[Peter P.J.],
Suomalainen, J.M.[Juha M.],
Bartholomeus, H.M.[Harm M.],
Clevers, J.G.P.W.[Jan G.P.W.],
Hyperspectral Reflectance Anisotropy Measurements Using a Pushbroom
Spectrometer on an Unmanned Aerial Vehicle:
Results for Barley, Winter Wheat, and Potato,
RS(8), No. 11, 2016, pp. 909.
DOI Link
1612
BibRef
Earlier: A2, A1, A3, A4:
Reflectance Anisotropy Measurements Using a Pushbroom Spectrometer
Mounted on UAV and a Laboratory Goniometer: Preliminary Results,
UAV-g15(257-259).
DOI Link
1512
BibRef
Roosjen, P.P.J.[Peter P.J.],
Suomalainen, J.M.[Juha M.],
Bartholomeus, H.M.[Harm M.],
Kooistra, L.[Lammert],
Clevers, J.G.P.W.[Jan G.P.W.],
Mapping Reflectance Anisotropy of a Potato Canopy Using Aerial Images
Acquired with an Unmanned Aerial Vehicle,
RS(9), No. 5, 2017, pp. xx-yy.
DOI Link
1706
BibRef
Gómez, D.[Diego],
Salvador, P.[Pablo],
Sanz, J.[Julia],
Casanova, J.L.[Jose Luis],
Potato Yield Prediction Using Machine Learning Techniques and
Sentinel 2 Data,
RS(11), No. 15, 2019, pp. xx-yy.
DOI Link
1908
BibRef
Salvador, P.[Pablo],
Gómez, D.[Diego],
Sanz, J.[Julia],
Casanova, J.L.[José Luis],
Estimation of Potato Yield Using Satellite Data at a Municipal Level:
A Machine Learning Approach,
IJGI(9), No. 6, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Appeltans, S.[Simon],
Guerrero, A.[Angela],
Nawar, S.[Said],
Pieters, J.[Jan],
Mouazen, A.M.[Abdul M.],
Practical Recommendations for Hyperspectral and Thermal Proximal
Disease Sensing in Potato and Leek Fields,
RS(12), No. 12, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Elsayed, S.[Salah],
El-Hendawy, S.[Salah],
Khadr, M.[Mosaad],
Elsherbiny, O.[Osama],
Al-Suhaibani, N.[Nasser],
Alotaibi, M.[Majed],
Tahir, M.U.[Muhammad Usman],
Darwish, W.[Waleed],
Combining Thermal and RGB Imaging Indices with Multivariate and
Data-Driven Modeling to Estimate the Growth, Water Status, and Yield
of Potato under Different Drip Irrigation Regimes,
RS(13), No. 9, 2021, pp. xx-yy.
DOI Link
2105
BibRef
Žibrat, U.[Uroš],
Stare, B.G.[Barbara Geric],
Knapic, M.[Matej],
Susic, N.[Nik],
Lapajne, J.[Janez],
Širca, S.[Saša],
Detection of Root-Knot Nematode Meloidogyne luci Infestation of
Potato Tubers Using Hyperspectral Remote Sensing and Real-Time PCR
Molecular Methods,
RS(13), No. 10, 2021, pp. xx-yy.
DOI Link
2105
BibRef
Yang, H.B.[Hai-Bo],
Li, F.[Fei],
Wang, W.[Wei],
Yu, K.[Kang],
Estimating Above-Ground Biomass of Potato Using Random Forest and
Optimized Hyperspectral Indices,
RS(13), No. 12, 2021, pp. xx-yy.
DOI Link
2106
BibRef
Mhango, J.K.[Joseph K.],
Harris, E.W.[Edwin W.],
Green, R.[Richard],
Monaghan, J.M.[James M.],
Mapping Potato Plant Density Variation Using Aerial Imagery and Deep
Learning Techniques for Precision Agriculture,
RS(13), No. 14, 2021, pp. xx-yy.
DOI Link
2107
BibRef
Li, D.[Dan],
Miao, Y.X.[Yu-Xin],
Gupta, S.K.[Sanjay K.],
Rosen, C.J.[Carl J.],
Yuan, F.[Fei],
Wang, C.Y.[Chong-Yang],
Wang, L.[Li],
Huang, Y.B.[Yan-Bo],
Improving Potato Yield Prediction by Combining Cultivar Information
and UAV Remote Sensing Data Using Machine Learning,
RS(13), No. 16, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Mhango, J.K.[Joseph K.],
Harris, W.E.[W. Edwin],
Monaghan, J.M.[James M.],
Relationships between the Spatio-Temporal Variation in Reflectance
Data from the Sentinel-2 Satellite and Potato (Solanum Tuberosum L.)
Yield and Stem Density,
RS(13), No. 21, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Appeltans, S.[Simon],
Apolo-Apolo, O.E.[Orly Enrique],
Rodríguez-Vázquez, J.N.[Jaime Nolasco],
Pérez-Ruiz, M.[Manuel],
Pieters, J.[Jan],
Mouazen, A.M.[Abdul M.],
The Automation of Hyperspectral Training Library Construction:
A Case Study for Wheat and Potato Crops,
RS(13), No. 23, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Shi, Y.[Yue],
Han, L.X.[Liang-Xiu],
Kleerekoper, A.[Anthony],
Chang, S.[Sheng],
Hu, T.[Tongle],
Novel CropdocNet Model for Automated Potato Late Blight Disease
Detection from Unmanned Aerial Vehicle-Based Hyperspectral Imagery,
RS(14), No. 2, 2022, pp. xx-yy.
DOI Link
2201
BibRef
Yang, H.[Huanbo],
Hu, Y.[Yaohua],
Zheng, Z.Z.[Zhou-Zhou],
Qiao, Y.C.[Yi-Chen],
Hou, B.[Bingru],
Chen, J.[Jun],
A New Approach for Nitrogen Status Monitoring in Potato Plants by
Combining RGB Images and SPAD Measurements,
RS(14), No. 19, 2022, pp. xx-yy.
DOI Link
2210
BibRef
Liu, Y.[Yang],
Feng, H.K.[Hai-Kuan],
Yue, J.[Jibo],
Li, Z.H.[Zhen-Hai],
Jin, X.L.[Xiu-Liang],
Fan, Y.G.[Yi-Guang],
Feng, Z.H.[Zhi-Hang],
Yang, G.J.[Gui-Jun],
Estimation of Aboveground Biomass of Potatoes Based on Characteristic
Variables Extracted from UAV Hyperspectral Imagery,
RS(14), No. 20, 2022, pp. xx-yy.
DOI Link
2211
BibRef
Liu, Y.[Yang],
Feng, H.K.[Hai-Kuan],
Yue, J.[Jibo],
Fan, Y.G.[Yi-Guang],
Jin, X.L.[Xiu-Liang],
Zhao, Y.[Yu],
Song, X.Y.[Xiao-Yu],
Long, H.L.[Hui-Ling],
Yang, G.J.[Gui-Jun],
Estimation of Potato Above-Ground Biomass Using UAV-Based
Hyperspectral images and Machine-Learning Regression,
RS(14), No. 21, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Liu, Y.[Yang],
Feng, H.K.[Hai-Kuan],
Yue, J.[Jibo],
Fan, Y.G.[Yi-Guang],
Jin, X.L.[Xiu-Liang],
Song, X.Y.[Xiao-Yu],
Yang, H.[Hao],
Yang, G.J.[Gui-Jun],
Estimation of Potato Above-Ground Biomass Based on Vegetation Indices
and Green-Edge Parameters Obtained from UAVs,
RS(14), No. 21, 2022, pp. xx-yy.
DOI Link
2212
BibRef
van de Vijver, R.[Ruben],
Mertens, K.[Koen],
Heungens, K.[Kurt],
Nuyttens, D.[David],
Wieme, J.[Jana],
Maes, W.H.[Wouter H.],
van Beek, J.[Jonathan],
Somers, B.[Ben],
Saeys, W.[Wouter],
Ultra-High-Resolution UAV-Based Detection of Alternaria solani
Infections in Potato Fields,
RS(14), No. 24, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Jindo, K.[Keiji],
Teklu, M.G.[Misghina Goitom],
van Boheeman, K.[Koen],
Njehia, N.S.[Njane Stephen],
Narabu, T.[Takashi],
Kempenaar, C.[Corne],
Molendijk, L.P.G.[Leendert P. G.],
Schepel, E.[Egbert],
Been, T.H.[Thomas H.],
Unmanned Aerial Vehicle (UAV) for Detection and Prediction of Damage
Caused by Potato Cyst Nematode G. pallida on Selected Potato
Cultivars,
RS(15), No. 5, 2023, pp. xx-yy.
DOI Link
2303
BibRef
Agbona, A.[Afolabi],
Montesinos-Lopez, O.A.[Osval A.],
Everett, M.E.[Mark E.],
Ruiz-Guzman, H.[Henry],
Hays, D.B.[Dirk B.],
Yield Adjustment Using GPR-Derived Spatial Covariance Structure in
Cassava Field: A Preliminary Investigation,
RS(15), No. 7, 2023, pp. 1771.
DOI Link
2304
BibRef
Oivukkamäki, J.[Jaakko],
Atherton, J.[Jon],
Xu, S.[Shan],
Riikonen, A.[Anu],
Zhang, C.[Chao],
Hakala, T.[Teemu],
Honkavaara, E.[Eija],
Porcar-Castell, A.[Albert],
Investigating Foliar Macro- and Micronutrient Variation with
Chlorophyll Fluorescence and Reflectance Measurements at the Leaf and
Canopy Scales in Potato,
RS(15), No. 10, 2023, pp. xx-yy.
DOI Link
2306
BibRef
Ebrahimy, H.[Hamid],
Wang, Y.[Yi],
Zhang, Z.[Zhou],
Utilization of synthetic minority oversampling technique for
improving potato yield prediction using remote sensing data and
machine learning algorithms with small sample size of yield data,
PandRS(201), 2023, pp. 12-25.
Elsevier DOI
2307
Potato, Yield prediction, Machine learning, Synthetic data, SMOTE
BibRef
Yu, T.[Tong],
Zhou, J.[Jing],
Fan, J.H.[Jia-Hao],
Wang, Y.[Yi],
Zhang, Z.[Zhou],
Potato Leaf Area Index Estimation Using Multi-Sensor Unmanned Aerial
Vehicle (UAV) Imagery and Machine Learning,
RS(15), No. 16, 2023, pp. 4108.
DOI Link
2309
BibRef
Mukiibi, A.[Alex],
Franke, A.C.[Angelinus Cornelius],
Steyn, J.M.[Joachim Martin],
Determination of Crop Coefficients and Evapotranspiration of Potato
in a Semi-Arid Climate Using Canopy State Variables and
Satellite-Based NDVI,
RS(15), No. 18, 2023, pp. 4579.
DOI Link
2310
BibRef
Yin, H.[Hang],
Li, F.[Fei],
Yang, H.B.[Hai-Bo],
Di, Y.F.[Yun-Fei],
Hu, Y.C.[Yun-Cai],
Yu, K.[Kang],
Mapping Plant Nitrogen Concentration and Aboveground Biomass of
Potato Crops from Sentinel-2 Data Using Ensemble Learning Models,
RS(16), No. 2, 2024, pp. 349.
DOI Link
2402
BibRef
Piccard, I.,
Gobin, A.,
Wellens, J.,
Tychon, B.,
Goffart, J.P.,
Curnel, Y.,
Planchon, V.,
Leclef, A.,
Cools, R.,
Cattoor, N.,
Potato monitoring in Belgium with 'WatchITGrow',
MultiTemp17(1-4)
IEEE DOI
1712
remote sensing, Belgium, agrometeorological algorithms,
back-end parameters, biophysical parameters,
yield forecast
BibRef
Chapter on Remote Sensing General Issue, Land Use, Land Cover continues in
Rapeseed Crop Analysis, Canola Analysis, Production, Detection .