16.6.2.13.3 Multi-Object Tracking, Space Debries

Chapter Contents (Back)
Target Tracking. Space Debris.

Fork, R.,
Orbital Debris Mitigation Using Minimum Uncertainty Optical States,
PIEEE(97), No. 6, June 2009, pp. 951-953.
IEEE DOI 0905
BibRef

Bai, X., Xing, M., Zhou, F., Bao, Z.,
High-Resolution Three-Dimensional Imaging of Spinning Space Debris,
GeoRS(47), No. 7, July 2009, pp. 2352-2362.
IEEE DOI 0906
BibRef

Kucharski, D., Kirchner, G., Koidl, F., Fan, C.[Cunbo], Carman, R., Moore, C., Dmytrotsa, A., Ploner, M., Bianco, G., Medvedskij, M., Makeyev, A., Appleby, G., Suzuki, M., Torre, J.M., Zhang, Z.P.[Zhong-Ping], Grunwaldt, L., Feng, Q.[Qu],
Attitude and Spin Period of Space Debris Envisat Measured by Satellite Laser Ranging,
GeoRS(52), No. 12, December 2014, pp. 7651-7657.
IEEE DOI 1410
artificial satellites BibRef

Falsone, A., Prandini, M.,
A Randomized Approach to Probabilistic Footprint Estimation of a Space Debris Uncontrolled Reentry,
ITS(18), No. 10, October 2017, pp. 2657-2666.
IEEE DOI 1710
Aircraft, Atmospheric modeling, Estimation, Optimization, Probabilistic logic, Trajectory, Uncertainty, Randomized algorithms, air traffic control, nonlinear filtering, uncontrolled, debris, reentry BibRef

Tan, X.H.[Xiao-Heng], Yang, Z.J.[Zhi-Jun], Li, D.[Dong], Liu, H.Q.[Hong-Qing], Liao, G.S.[Gui-Sheng], Wu, Y.[Yang], Liu, Y.C.[Yu-Chuan],
An Efficient Range-Doppler Domain ISAR Imaging Approach for Rapidly Spinning Targets,
GeoRS(58), No. 4, April 2020, pp. 2670-2681.
IEEE DOI 2004
Spinning, Imaging, Radar imaging, Space debris, Doppler effect, Azimuth, Inverse synthetic aperture radar (ISAR), low complexity, rapidly spinning targets BibRef

Du, Y.[Yun], Wen, D.S.[De-Sheng], Liu, G.Z.[Gui-Zhong], Qiu, S.[Shi], Yao, D.L.[Da-Lei], Yi, H.W.[Hong-Wei], Liu, M.Y.[Mei-Ying],
A novel approach for space debris recognition based on the full information vectors of star points,
JVCIR(71), 2020, pp. 102716.
Elsevier DOI 2009
Space debris recognition, Star image, Binary classifier, Equal probability density curve, Full information vector BibRef

Leibovich, M.[Matan], Papanicolaou, G.[George], Tsogka, C.[Chrysoula],
Generalized Correlation-Based Imaging for Satellites,
SIIMS(13), No. 3, 2020, pp. 1331-1366.
DOI Link 2010
fast moving small objects in space, such as low earth orbit satellites or satellite debris BibRef

Chen, L.[Long], Liu, C.Z.[Cheng-Zhi], Li, Z.W.[Zhen-Wei], Kang, Z.[Zhe],
A New Triangulation Algorithm for Positioning Space Debris,
RS(13), No. 23, 2021, pp. xx-yy.
DOI Link 2112
BibRef
And: Correction: RS(15), No. 1, 2023, pp. xx-yy.
DOI Link 2301
BibRef

Maffei, M.[Marco], Aubry, A.[Augusto], de Maio, A.[Antonio], Farina, A.[Alfonso],
Spaceborne Radar Sensor Architecture for Debris Detection and Tracking,
GeoRS(59), No. 8, August 2021, pp. 6621-6636.
IEEE DOI 2108
Radar tracking, Spaceborne radar, Hypercubes, Surveillance, Space vehicles, Planetary orbits, Bayesian inference, spaceborne radar (SBR) BibRef

Li, H.[Hui], Niu, Z.[Zhaodong], Sun, Q.[Quan], Li, Y.[Yabo],
Co-Correcting: Combat Noisy Labels in Space Debris Detection,
RS(14), No. 20, 2022, pp. xx-yy.
DOI Link 2211
BibRef

Yin, Y.[Yewen], Li, Z.W.[Zhen-Wei], Liu, C.Z.[Cheng-Zhi], Kang, Z.[Zhe], Sun, J.N.[Jian-Nan], Chen, L.[Long],
Improved Initial Orbit Determination Based on the Gooding Method of Low Earth Orbit Space Debris Using Space-Based Observations,
RS(15), No. 21, 2023, pp. 5217.
DOI Link 2311
BibRef

Zhang, M.L.[Ming-Liang], Wen, G.[Guanyu], Fan, C.[Cunbo], Guan, B.[Bowen], Song, Q.L.[Qing-Li], Liu, C.Z.[Cheng-Zhi], Wang, S.[Shuang],
Analysis of the Ranging Capability of a Space Debris Laser Ranging System Based on the Maximum Detection Distance Model,
RS(16), No. 4, 2024, pp. 727.
DOI Link 2402
BibRef

Pandeirada, J.[João], Bergano, M.[Miguel], Marques, P.[Paulo], Coelho, B.[Bruno], Barbosa, D.[Domingos], Figueiredo, M.[Mário],
ATLAS: Latest Advancements and First Observations,
RS(16), No. 4, 2024, pp. 704.
DOI Link 2402
Space debris. BibRef

Holdsworth, D.A.[David A.], Spargo, A.J.[Andrew J.], Reid, I.M.[Iain M.], Adami, C.L.[Christian L.],
Space Domain Awareness Observations Using the Buckland Park VHF Radar,
RS(16), No. 7, 2024, pp. 1252.
DOI Link 2404
Use a wind profile radar to monitor space. BibRef

Heading, E.[Emma], Nguyen, S.T.[Si Tran], Holdsworth, D.[David], Reid, I.M.[Iain M.],
Micro-Doppler Signature Analysis for Space Domain Awareness Using VHF Radar,
RS(16), No. 8, 2024, pp. 1354.
DOI Link 2405
BibRef


Simakov, S.P., Belokonov, I.V.,
Cubesat Onboard Algorithm for Space Debris Motion Determination By Processing Stereo Images,
ISPRS21(B1-2021: 229-234).
DOI Link 2201
BibRef

Hickman, S.[Sierra], Muruganandan, V.A.[Vishnu Anand], Weddell, S.[Stephen], Clare, R.[Richard],
Image Metrics for Deconvolution of Satellites in Low Earth Orbit,
IVCNZ20(1-6)
IEEE DOI 2012
Dealing with low-earth orbit debris. Measurement, Satellites, Deconvolution, Space debris, Low earth orbit satellites, Terrestrial atmosphere, Clutter BibRef

Davey, S.J., Bessell, T., Cheung, B., Rutten, M.,
Track before Detect for Space Situation Awareness,
DICTA15(1-7)
IEEE DOI 1603
image registration BibRef

Leu, J.G.,
A Computer Vision Process to Detect and Track Space Debris Using Ground-Based Optical Telephoto Images,
ICPR92(I:522-525).
IEEE DOI BibRef 9200

Chapter on Motion -- Feature-Based, Long Range, Motion and Structure Estimates, Tracking, Surveillance, Activities continues in
Multi-Object Tracking, Neural Networks, Learning .


Last update:May 6, 2024 at 15:50:14