Rey, M.T.,
Tunaley, J.K.,
Folinsbee, J.T.,
Jahans, P.A.,
Dixon, J.A.,
Vent, M.R.,
Application of Random Transform Techniques to Wake Detection in
Seasat-A SAR Images,
GeoRS(28), 1990, pp. 561-566.
SAR.
BibRef
9000
Copeland, A.C.,
Ravichandran, G.,
Trivedi, M.M.,
Radon Transform based Ship-Wake Detection,
GeoRS(33), No. 1, January 1995, pp. 35-45.
IEEE Top Reference.
BibRef
9501
Earlier:
Localized Radon Transform-Based Detection of Linear Features in
Noisy Images,
CVPR94(664-667).
IEEE DOI
Hough Transform.
SAR Image Analysis.
BibRef
Clark, C.,
Boyce, J.,
The detection of ship trail clouds by artificial neural network,
JRS(20), No. 4, March 1999, pp. 711.
BibRef
9903
Magli, E.,
Olmo, G.,
Intelligent pattern detection and compression. An application to very
low bit rate transmission of ship wake aerial images,
PRL(20), No. 2, February 1999, pp. 215-220.
BibRef
9902
Kuo, J.M.[Jin Min],
Chen, K.S.,
The application of wavelets correlator for ship wake detection in SAR
images,
GeoRS(41), No. 6, June 2003, pp. 1506-1511.
IEEE Abstract.
0308
BibRef
Zilman, G.,
Zapolski, A.,
Marom, M.,
On Detectability of a Ship's Kelvin Wake in Simulated SAR Images of
Rough Sea Surface,
GeoRS(53), No. 2, February 2015, pp. 609-619.
IEEE DOI
1411
Radon transforms
BibRef
Graziano, M.D.[Maria Daniela],
d'Errico, M.[Marco],
Rufino, G.[Giancarlo],
Wake Component Detection in X-Band SAR Images for Ship Heading and
Velocity Estimation,
RS(8), No. 6, 2016, pp. 498.
DOI Link
1608
BibRef
Fujimura, A.,
Soloviev, A.,
Rhee, S.H.,
Romeiser, R.,
Coupled Model Simulation of Wind Stress Effect on Far Wakes of Ships
in SAR Images,
GeoRS(54), No. 5, May 2016, pp. 2543-2551.
IEEE DOI
1604
computational fluid dynamics
BibRef
Graziano, M.D.[Maria Daniela],
Grasso, M.[Marco],
d'Errico, M.[Marco],
Performance Analysis of Ship Wake Detection on Sentinel-1 SAR Images,
RS(9), No. 11, 2017, pp. xx-yy.
DOI Link
1712
BibRef
Sun, Y.X.,
Liu, P.,
Jin, Y.Q.,
Ship Wake Components: Isolation, Reconstruction, and Characteristics
Analysis in Spectral, Spatial, and TerraSAR-X Image Domains,
GeoRS(56), No. 7, July 2018, pp. 4209-4224.
IEEE DOI
1807
Dispersion, Image reconstruction, Kelvin, Marine vehicles, Shape,
Spectral analysis, Synthetic aperture radar,
synthetic aperture radar (SAR) image
BibRef
Tings, B.[Björn],
Pleskachevsky, A.[Andrey],
Velotto, D.[Domenico],
Jacobsen, S.[Sven],
Extension of Ship Wake Detectability Model for Non-Linear Influences
of Parameters Using Satellite Based X-Band Synthetic Aperture Radar,
RS(11), No. 5, 2019, pp. xx-yy.
DOI Link
1903
BibRef
Karakus, O.,
Rizaev, I.,
Achim, A.,
Ship Wake Detection in SAR Images via Sparse Regularization,
GeoRS(58), No. 3, March 2020, pp. 1665-1677.
IEEE DOI
2003
BibRef
And:
Correction:
GeoRS(58), No. 9, September 2020, pp. 6122-6123.
IEEE DOI
2008
Generalized minimax concave (GMC) regularization,
inverse problem, maximum a posteriori (MAP) estimation,
synthetic aperture radar (SAR) imagery.
Sea surface, Image color analysis
BibRef
Graziano, M.D.[Maria Daniela],
Preliminary Results of Ship Detection Technique by Wake Pattern
Recognition in SAR Images,
RS(12), No. 18, 2020, pp. xx-yy.
DOI Link
2009
BibRef
Tings, B.[Björn],
Non-Linear Modeling of Detectability of Ship Wake Components in
Dependency to Influencing Parameters Using Spaceborne X-Band SAR,
RS(13), No. 2, 2021, pp. xx-yy.
DOI Link
2101
BibRef
Xue, F.[Fuduo],
Jin, W.Q.[Wei-Qi],
Qiu, S.[Su],
Yang, J.[Jie],
Airborne optical polarization imaging for observation of submarine
Kelvin wakes on the sea surface: Imaging chain and simulation,
PandRS(178), 2021, pp. 136-154.
Elsevier DOI
2108
Polarized light imaging, Kelvin wake, Sea surface,
Wave-current interaction, pBRDF, Ray tracing
BibRef
Chan, Y.T.[Yi-Tung],
Maritime filtering for images and videos,
SP:IC(99), 2021, pp. 116477.
Elsevier DOI
2111
Maritime noise suppression, Maritime signal processing,
Maritime foreground segmentation, Autonomous ships, Wake removal
BibRef
Graziano, M.D.[Maria Daniela],
Renga, A.[Alfredo],
Towards Automatic Recognition of Wakes Generated by Dark Vessels in
Sentinel-1 Images,
RS(13), No. 10, 2021, pp. xx-yy.
DOI Link
2105
BibRef
Wang, L.[Letian],
Zhang, M.[Min],
Liu, J.[Jiong],
Electromagnetic Scattering Model for Far Wakes of Ship with Wind
Waves on Sea Surface,
RS(13), No. 21, 2021, pp. xx-yy.
DOI Link
2112
BibRef
del Prete, R.[Roberto],
Graziano, M.D.[Maria Daniela],
Renga, A.[Alfredo],
First Results on Wake Detection in SAR Images by Deep Learning,
RS(13), No. 22, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Ding, K.Y.[Kai-Yang],
Yang, J.F.[Jun-Feng],
Wang, Z.[Zhao],
Ni, K.[Kai],
Wang, X.O.[Xia-Ohao],
Zhou, Q.[Qian],
Specific Windows Search for Multi-Ship and Multi-Scale Wake Detection
in SAR Images,
RS(14), No. 1, 2022, pp. xx-yy.
DOI Link
2201
BibRef
Ying, S.P.[Shi-Peng],
Qu, H.S.[Hong-Song],
Tao, S.P.[Shu-Ping],
Zheng, L.L.[Liang-Liang],
Wu, X.B.[Xia-Bin],
Radiation Sensitivity Analysis of Ocean Wake Information Detection
System Based on Visible Light Remote Sensing,
RS(14), No. 16, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Wang, H.[Hui],
Nie, D.[Ding],
Zuo, Y.[Yacong],
Tang, L.[Lu],
Zhang, M.[Min],
Nonlinear Ship Wake Detection in SAR Images Based on Electromagnetic
Scattering Model and YOLOv5,
RS(14), No. 22, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Grosso, E.[Elena],
Guida, R.[Raffaella],
A New Automated Ship Wake Detector for Small and Go-Fast Ships in
Sentinel-1 Imagery,
RS(14), No. 24, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Tings, B.[Björn],
Pleskachevsky, A.[Andrey],
Wiehle, S.[Stefan],
Comparison of detectability of ship wake components between C-Band
and X-Band synthetic aperture radar sensors operating under different
slant ranges,
PandRS(196), 2023, pp. 306-324.
Elsevier DOI
2302
Detectability modelling, Machine learning,
Maritime object detection, Ship wake detection, Synthetic aperture radar
BibRef
Wang, J.J.[Jing-Jing],
Guo, L.X.[Li-Xin],
Wei, Y.W.[Yi-Wen],
Chai, S.[Shuirong],
Study on Ship Kelvin Wake Detection in Numerically Simulated SAR
Images,
RS(15), No. 4, 2023, pp. xx-yy.
DOI Link
2303
BibRef
Qiao, Q.Y.[Qing-Yu],
Kong, X.Z.[Xiang-Zheng],
Wu, S.[Shufeng],
Liu, G.C.[Guo-Chang],
Zhang, G.J.[Guo-Jun],
Yang, H.[Hua],
Zhang, W.D.[Wen-Dong],
Yang, Y.H.[Yu-Hua],
Jia, L.C.[Li-Cheng],
He, C.D.[Chang-De],
Cui, J.G.[Jian-Gong],
Wang, R.X.[Ren-Xin],
A Bio-Inspired MEMS Wake Detector for AUV Tracking and Coordinated
Formation,
RS(15), No. 11, 2023, pp. 2949.
DOI Link
2306
BibRef
Wu, S.Y.[Shu-Ya],
Wang, Y.H.[Yun-Hua],
Li, Q.[Qian],
Zhang, Y.M.[Yan-Min],
Bai, Y.N.[Yi-Ning],
Zheng, H.L.[Hong-Lei],
Simulation of Synthetic Aperture Radar Images for Ocean Ship Wakes,
RS(15), No. 23, 2023, pp. 5521.
DOI Link
2312
BibRef
Jiang, Y.[Yanni],
Yang, Z.Y.[Zi-Yuan],
Li, K.[Ke],
Liu, T.[Tao],
Pre-Processing of Simulated Synthetic Aperture Radar Image Scenes
Using Polarimetric Enhancement for Improved Ship Wake Detection,
RS(16), No. 4, 2024, pp. 658.
DOI Link
2402
BibRef
Guan, Y.[Yanan],
Xu, H.P.[Hua-Ping],
Li, W.[Wei],
Li, C.S.[Chun-Sheng],
Ship Wake Detection in a Single SAR Image via a Modified Low-Rank
Constraint,
RS(16), No. 18, 2024, pp. 3487.
DOI Link
2410
BibRef
Rizaev, I.,
Karakus, O.,
Hogan, S.J.,
Achim, A.,
The Effect Of Sea State On Ship Wake Detectability In Simulated Sar
Imagery,
ICIP20(3478-3482)
IEEE DOI
2011
Sea state, Marine vehicles, Indexes, Sea surface, Kelvin, Simulation,
Satellites, SAR Imagery Simulation, Ship Wake,
Wave Spectrum
BibRef
Chapter on Cartography, Aerial Images, Buildings, Roads, Terrain, Forests, Trees, ATR continues in
ATR -- IR, Infra-Red, Thermal, Applications .