Liu, C.L.[Chun-Lei],
Ding, W.R.[Wen-Rui],
Wang, X.D.[Xiao-Di],
Zhang, B.C.[Bao-Chang],
Hybrid Gabor Convolutional Networks,
PRL(116), 2018, pp. 164-169.
Elsevier DOI
1812
Hybrid Gabor Convolutional Networks,
Convolutional neural network, Binary networks, Deep learning
BibRef
Jiang, Y.S.[Yan-Shu],
Zhao, T.L.[Tian-Li],
He, X.Y.[Xiang-Yu],
Leng, C.[Cong],
Cheng, J.[Jian],
BitStream: An efficient framework for inference of binary neural
networks on CPUs,
PRL(125), 2019, pp. 303-309.
Elsevier DOI
1909
Convolutional neural networks, Binary neural networks, Image classification
BibRef
Ignatov, D.[Dmitry],
Ignatov, A.[Andrey],
Controlling information capacity of binary neural network,
PRL(138), 2020, pp. 276-281.
Elsevier DOI
2010
Deep learning, Binary neural network, Information theory, Shannon entropy
BibRef
Zhou, X.C.[Xi-Chuan],
Ding, R.[Rui],
Liu, H.J.[Hai-Jun],
LC-BiDet:
Laterally Connected Binary Detector with Efficient Image Processing,
SPLetters(29), 2022, pp. 1262-1266.
IEEE DOI
2206
Detectors, Convolution, Object detection, Training,
Feature extraction, Convolutional neural networks, regularization term
BibRef
Liu, C.L.[Chun-Lei],
Ding, W.R.[Wen-Rui],
Chen, P.[Peng],
Zhuang, B.[Bohan],
Wang, Y.F.[Yu-Feng],
Zhao, Y.[Yang],
Zhang, B.C.[Bao-Chang],
Han, Y.Q.[Yu-Qi],
RB-Net: Training Highly Accurate and Efficient Binary Neural Networks
With Reshaped Point-Wise Convolution and Balanced Activation,
CirSysVideo(32), No. 9, September 2022, pp. 6414-6424.
IEEE DOI
2209
Convolution, Neural networks, Standards, Kernel, Training,
Computational efficiency, Spatial databases, object classification
BibRef
Wang, Q.[Qi],
Guo, N.[Nianhui],
Xiong, Z.[Zhitong],
Yin, Z.[Zeping],
Li, X.L.[Xue-Long],
Gradient Matters: Designing Binarized Neural Networks via Enhanced
Information-Flow,
PAMI(44), No. 11, November 2022, pp. 7551-7562.
IEEE DOI
2210
Convolution, Training, Neural networks, Optimization, Robustness,
Kernel, Feature extraction, Neural network accelerating,
gradient approximation
BibRef
Qin, H.T.[Hao-Tong],
Zhang, X.G.[Xiang-Guo],
Gong, R.H.[Rui-Hao],
Ding, Y.[Yifu],
Xu, Y.[Yi],
Liu, X.L.[Xiang-Long],
Distribution-Sensitive Information Retention for Accurate Binary Neural
Network,
IJCV(131), No. 1, January 2023, pp. 26-47.
Springer DOI
2301
BibRef
Qin, H.T.[Hao-Tong],
Gong, R.H.[Rui-Hao],
Liu, X.L.[Xiang-Long],
Shen, M.,
Wei, Z.,
Yu, F.,
Song, J.,
Forward and Backward Information Retention for Accurate Binary Neural
Networks,
CVPR20(2247-2256)
IEEE DOI
2008
Quantization (signal), Training, Backpropagation,
Propagation losses, Biological neural networks, Information entropy
BibRef
Chien, J.T.[Jen-Tzung],
Chang, S.T.[Su-Ting],
Bayesian asymmetric quantized neural networks,
PR(139), 2023, pp. 109463.
Elsevier DOI
2304
Quantized neural network, Model compression,
Binary neural network, Bayesian asymmetric quantization
BibRef
Zhao, Z.[Zhi],
Xu, K.[Ke],
Ma, Y.X.[Yan-Xin],
Wan, J.W.[Jian-Wei],
A gradient optimization and manifold preserving based binary neural
network for point cloud,
PR(139), 2023, pp. 109445.
Elsevier DOI
2304
Binarization, Gradient optimization, Manifold, Point cloud
BibRef
Lin, M.B.[Ming-Bao],
Ji, R.R.[Rong-Rong],
Xu, Z.H.[Zi-Han],
Zhang, B.C.[Bao-Chang],
Chao, F.[Fei],
Lin, C.W.[Chia-Wen],
Shao, L.[Ling],
SiMaN: Sign-to-Magnitude Network Binarization,
PAMI(45), No. 5, May 2023, pp. 6277-6288.
IEEE DOI
2304
Quantization (signal), Optimization, Training, Neural networks,
Entropy, Computational modeling, Laplace equations, weight magnitude
BibRef
Lin, Y.H.[Yu-Han],
Niu, L.F.[Ling-Feng],
Xiao, Y.[Yang],
Zhou, R.Z.[Rui-Zhi],
Diluted binary neural network,
PR(140), 2023, pp. 109556.
Elsevier DOI
2305
Model compression, Network quantization, Binary neural network,
Ternary neural network, Sparse regularization
BibRef
Park, J.[Jaeyoon],
Lee, S.[Sunggu],
Energy-efficient Image Processing Using Binary Neural Networks with
Hadamard Transform,
ACCV22(V:512-526).
Springer DOI
2307
BibRef
Xie, Y.[Yefan],
Hou, X.[Xuan],
Guo, Y.W.[Yan-Wei],
Wang, X.Y.[Xiu-Ying],
Zheng, J.B.[Jiang-Bin],
Joint-Guided Distillation Binary Neural Network via Dynamic
Channel-Wise Diversity Enhancement for Object Detection,
CirSysVideo(34), No. 1, January 2024, pp. 448-460.
IEEE DOI
2401
BibRef
Sengupta, S.[Sourya],
Anastasio, M.A.[Mark A.],
A Test Statistic Estimation-Based Approach for Establishing
Self-Interpretable CNN-Based Binary Classifiers,
MedImg(43), No. 5, May 2024, pp. 1753-1765.
IEEE DOI
2405
Task analysis, Decoding, Biomedical imaging, Closed box, Retina,
Computational modeling, Tumors, Decision theory, interpretability,
classification
BibRef
Yuan, M.Y.[Ming-Yu],
Pei, S.W.[Song-Wei],
RAD-BNN: Regulating activation distribution for accurate binary
neural network,
IVC(148), 2024, pp. 105114.
Elsevier DOI Code:
WWW Link.
2407
Binary neural network, Network architecture,
Activation distribution, Lightweight model
BibRef
Wu, X.M.[Xiao-Ming],
Zheng, D.[Dian],
Liu, Z.[Zuhao],
Zheng, W.S.[Wei-Shi],
Estimator Meets Equilibrium Perspective: A Rectified Straight Through
Estimator for Binary Neural Networks Training,
ICCV23(17009-17018)
IEEE DOI
2401
BibRef
Wang, Y.K.[Yi-Kai],
Huang, W.B.[Wen-Bing],
Dong, Y.P.[Yin-Peng],
Sun, F.C.[Fu-Chun],
Yao, A.[Anbang],
Compacting Binary Neural Networks by Sparse Kernel Selection,
CVPR23(24374-24383)
IEEE DOI
2309
BibRef
Park, G.[Geon],
Yoon, J.[Jaehong],
Zhang, H.Y.[Hai-Yang],
Zhang, X.[Xing],
Hwang, S.J.[Sung Ju],
Eldar, Y.C.[Yonina C.],
Bitat: Neural Network Binarization with Task-dependent Aggregated
Transformation,
CADK22(50-66).
Springer DOI
2304
BibRef
Ahn, D.[Daehyun],
Kim, H.[Hyungjun],
Kim, T.[Taesu],
Park, E.[Eunhyeok],
Kim, J.J.[Jae-Joon],
Searching for Robust Binary Neural Networks via Bimodal Parameter
Perturbation,
WACV23(2409-2418)
IEEE DOI
2302
Gradient methods, Convolution, Perturbation methods,
Neural networks, Search problems, Stability analysis, visual reasoning
BibRef
Falkena, S.[Sieger],
Jamali-Rad, H.[Hadi],
van Gemert, J.[Jan],
LAB: Learnable Activation Binarizer for Binary Neural Networks,
WACV23(6414-6423)
IEEE DOI
2302
Deep learning, Limiting, Costs, Neural networks, Delays,
Applications: Embedded sensing/real-time techniques,
Smartphones/end user devices
BibRef
Xu, S.[Sheng],
Li, Y.J.[Yan-Jing],
Wang, T.C.[Tian-Cheng],
Ma, T.[Teli],
Zhang, B.C.[Bao-Chang],
Gao, P.[Peng],
Qiao, Y.[Yu],
Lü, J.[Jinhu],
Guo, G.D.[Guo-Dong],
Recurrent Bilinear Optimization for Binary Neural Networks,
ECCV22(XXIV:19-35).
Springer DOI
2211
BibRef
Tu, Z.J.[Zhi-Jun],
Chen, X.H.[Xing-Hao],
Ren, P.J.[Peng-Ju],
Wang, Y.H.[Yun-He],
AdaBin: Improving Binary Neural Networks with Adaptive Binary Sets,
ECCV22(XI:379-395).
Springer DOI
2211
BibRef
Xing, X.R.[Xing-Run],
Li, Y.G.[Yang-Guang],
Li, W.[Wei],
Ding, W.R.[Wen-Rui],
Jiang, Y.L.[Ya-Long],
Wang, Y.F.[Yu-Feng],
Shao, J.[Jing],
Liu, C.L.[Chun-Lei],
Liu, X.L.[Xiang-Long],
Towards Accurate Binary Neural Networks via Modeling Contextual
Dependencies,
ECCV22(XI:536-552).
Springer DOI
2211
BibRef
Shang, Y.Z.[Yu-Zhang],
Xu, D.[Dan],
Duan, B.[Bin],
Zong, Z.L.[Zi-Liang],
Nie, L.Q.[Li-Qiang],
Yan, Y.[Yan],
Lipschitz Continuity Retained Binary Neural Network,
ECCV22(XI:603-619).
Springer DOI
2211
BibRef
Aouad, T.[Theodore],
Talbot, H.[Hugues],
Binary Morphological Neural Network,
ICIP22(3276-3280)
IEEE DOI
2211
Measurement, Convolutional codes, Neurons, Pipelines, Morphology,
Information filters, Convolutional neural networks,
image processing
BibRef
Zhang, Y.C.[Yi-Chi],
Zhang, Z.R.[Zhi-Ru],
Lew, L.[Lukasz],
PokeBNN: A Binary Pursuit of Lightweight Accuracy,
CVPR22(12465-12475)
IEEE DOI
2210
Measurement, Deep learning, Costs, Convolution, Neural networks,
Hardware, Machine learning
BibRef
Le, H.[Huu],
Høier, R.K.[Rasmus Kjær],
Lin, C.T.[Che-Tsung],
Zach, C.[Christopher],
AdaSTE: An Adaptive Straight-Through Estimator to Train Binary Neural
Networks,
CVPR22(460-469)
IEEE DOI
2210
Training, Deep learning, Autonomous systems, Neural networks,
Software algorithms, Software, Optimization methods, Machine learning
BibRef
Kim, D.[Dahyun],
Choi, J.H.[Jong-Hyun],
Unsupervised Representation Learning for Binary Networks by Joint
Classifier Learning,
CVPR22(9737-9746)
IEEE DOI
2210
Representation learning, Training, Codes, Surveillance,
Self-supervised learning, Vision sensors, Feature extraction,
Self- semi- meta- Efficient learning and inferences
BibRef
Sasdelli, M.[Michele],
Chin, T.J.[Tat-Jun],
Quantum Annealing Formulation for Binary Neural Networks,
DICTA21(1-10)
IEEE DOI
2201
Computers, Training, Deep learning, Annealing,
Computational modeling, Neural networks, Writing
BibRef
Kim, H.J.[Hyung-Jun],
Park, J.[Jihoon],
Lee, C.H.[Chang-Hun],
Kim, J.J.[Jae-Joon],
Improving Accuracy of Binary Neural Networks using Unbalanced
Activation Distribution,
CVPR21(7858-7867)
IEEE DOI
2111
Degradation, Deep learning, Analytical models,
Computational modeling, Neural networks, Mobile handsets
BibRef
Suarez-Ramirez, C.D.[Cuauhtemoc Daniel],
Gonzalez-Mendoza, M.[Miguel],
Chang, L.[Leonardo],
Ochoa-Ruiz, G.[Gilberto],
Duran-Vega, M.A.[Mario Alberto],
A Bop and Beyond: A Second Order Optimizer for Binarized Neural
Networks,
LXCV21(1273-1281)
IEEE DOI
2109
Training,
Artificial neural networks, Pattern recognition, Optimization
BibRef
Redfern, A.J.[Arthur J.],
Zhu, L.J.[Li-Jun],
Newquist, M.K.[Molly K.],
BCNN: A Binary CNN With All Matrix Ops Quantized To 1 Bit Precision,
BiVision21(4599-4607)
IEEE DOI
2109
Training, Convolution, Neural networks,
Memory management, Decoding
BibRef
Razani, R.[Ryan],
Morin, G.[Grégoire],
Sari, E.[Eyyüb],
Nia, V.P.[Vahid Partovi],
Adaptive Binary-Ternary Quantization,
BiVision21(4608-4613)
IEEE DOI
2109
Training, Adaptation models, Quantization (signal),
Computational modeling, Wearable computers, Neural networks, Speech recognition
BibRef
Chen, T.L.[Tian-Long],
Zhang, Z.Y.[Zhen-Yu],
Ouyang, X.[Xu],
Liu, Z.C.[Ze-Chun],
Shen, Z.Q.[Zhi-Qiang],
Wang, Z.Y.[Zhang-Yang],
'BNN - BN = ?': Training Binary Neural Networks without Batch
Normalization,
BiVision21(4614-4624)
IEEE DOI
2109
Training, Neural networks,
Standardization, Hardware, Pattern recognition
BibRef
Samragh, M.[Mohammad],
Hussain, S.[Siam],
Zhang, X.[Xinqiao],
Huang, K.[Ke],
Koushanfar, F.[Farinaz],
On the Application of Binary Neural Networks in Oblivious Inference,
BiVision21(4625-4634)
IEEE DOI
2109
Training, Data analysis, Computational modeling,
Face recognition, Neural networks, Data models
BibRef
Laydevant, J.[Jérémie],
Ernoult, M.[Maxence],
Querlioz, D.[Damien],
Grollier, J.[Julie],
Training Dynamical Binary Neural Networks with Equilibrium
Propagation,
BiVision21(4635-4644)
IEEE DOI
2109
Training, Neuromorphics, Heuristic algorithms, Neurons,
Memory management, Hardware, System-on-chip
BibRef
Pan, H.Y.[Hong-Yi],
Badawi, D.[Diaa],
Cetin, A.E.[Ahmet Enis],
Fast Walsh-Hadamard Transform and Smooth-Thresholding Based Binary
Layers in Deep Neural Networks,
BiVision21(4645-4654)
IEEE DOI
2109
Deep learning, Tensors, Convolution,
Transforms, Computer architecture
BibRef
Livochka, A.[Anastasiia],
Shekhovtsov, A.[Alexander],
Initialization and Transfer Learning of Stochastic Binary Networks
from Real-Valued Ones,
BiVision21(4655-4663)
IEEE DOI
2109
Training, Transfer learning,
Neural networks, Stochastic processes, Pattern recognition
BibRef
He, X.Y.[Xiang-Yu],
Mo, Z.T.[Zi-Tao],
Cheng, K.[Ke],
Xu, W.X.[Wei-Xiang],
Hu, Q.H.[Qing-Hao],
Wang, P.S.[Pei-Song],
Liu, Q.S.[Qing-Shan],
Cheng, J.[Jian],
Proxybnn: Learning Binarized Neural Networks via Proxy Matrices,
ECCV20(III:223-241).
Springer DOI
2012
BibRef
Liu, Z.C.[Ze-Chun],
Shen, Z.Q.[Zhi-Qiang],
Savvides, M.[Marios],
Cheng, K.T.[Kwang-Ting],
Reactnet: Towards Precise Binary Neural Network with Generalized
Activation Functions,
ECCV20(XIV:143-159).
Springer DOI
2011
BibRef
Kim, D.[Dahyun],
Singh, K.P.[Kunal Pratap],
Choi, J.H.[Jong-Hyun],
Learning Architectures for Binary Networks,
ECCV20(XII: 575-591).
Springer DOI
2010
BibRef
Phan, H.[Hai],
Huynh, D.[Dang],
He, Y.H.[Yi-Hui],
Savvides, M.[Marios],
Shen, Z.Q.[Zhi-Qiang],
MoBiNet: A Mobile Binary Network for Image Classification,
WACV20(3442-3451)
IEEE DOI
2006
Neural networks, Training,
Computational modeling, Standards, Task analysis, Computational efficiency
BibRef
Phan, H.[Hai],
Liu, Z.C.[Ze-Chun],
Huynh, D.[Dang],
Savvides, M.[Marios],
Cheng, K.T.[Kwang-Ting],
Shen, Z.Q.[Zhi-Qiang],
Binarizing MobileNet via Evolution-Based Searching,
CVPR20(13417-13426)
IEEE DOI
2008
Convolution, Neural networks,
Computational modeling, Training, Task analysis, Aerospace electronics
BibRef
Bethge, J.,
Yang, H.,
Meinel, C.,
Training Accurate Binary Neural Networks from Scratch,
ICIP19(899-903)
IEEE DOI
1910
Binary Neural Networks
BibRef
Bethge, J.[Joseph],
Bartz, C.[Christian],
Yang, H.J.[Hao-Jin],
Chen, Y.[Ying],
Meinel, C.[Christoph],
MeliusNet: An Improved Network Architecture for Binary Neural
Networks,
WACV21(1438-1447)
IEEE DOI
2106
Convolutional codes, Adaptation models,
Computational modeling, Neural networks, Computer architecture
BibRef
Bethge, J.,
Yang, H.,
Bornstein, M.,
Meinel, C.,
BinaryDenseNet: Developing an Architecture for Binary Neural Networks,
NeruArch19(1951-1960)
IEEE DOI
2004
computational complexity, neural net architecture,
binary neural networks, BNNs, computational memory costs,
binary densenet
BibRef
Xu, Y.H.[Ying-Hao],
Dong, X.[Xin],
Li, Y.D.[Yu-Dian],
Su, H.[Hao],
A Main/Subsidiary Network Framework for Simplifying Binary Neural
Networks,
CVPR19(7147-7155).
IEEE DOI
2002
BibRef
Shen, M.,
Han, K.,
Xu, C.,
Wang, Y.,
Searching for Accurate Binary Neural Architectures,
NeruArch19(2041-2044)
IEEE DOI
2004
evolutionary computation, mobile computing, neural nets,
search problems, mobile devices, binary weights,
neural architecture search
BibRef
Prabhu, A.[Ameya],
Batchu, V.[Vishal],
Gajawada, R.[Rohit],
Munagala, S.A.[Sri Aurobindo],
Namboodiri, A.[Anoop],
Hybrid Binary Networks: Optimizing for Accuracy, Efficiency and
Memory,
WACV18(821-829)
IEEE DOI
1806
approximation theory, data compression, image classification,
image coding, image representation,
Quantization (signal)
BibRef
Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
Adversarial Networks, Adversarial Inputs, Generative Adversarial .