Yuan, Y.H.[Yun-Hao],
Sun, Q.S.[Quan-Sen],
Zhou, Q.A.[Qi-Ang],
Xia, D.S.[De-Shen],
A novel multiset integrated canonical correlation analysis framework
and its application in feature fusion,
PR(44), No. 5, May 2011, pp. 1031-1040.
Elsevier DOI
1101
Pattern recognition, Canonical correlation analysis, Feature
extraction, Multiset canonical correlation analysis, Feature fusion
BibRef
Ji, H.K.[Hong-Kun],
Shen, X.B.[Xiao-Bo],
Sun, Q.S.[Quan-Sen],
Ji, Z.X.[Ze-Xuan],
Sparse Discrimination Based Multiset Canonical Correlation Analysis for
Multi-Feature Fusion and Recognition,
BMVC15(xx-yy).
DOI Link
1601
BibRef
Yan, H.[Hui],
Yuan, X.T.[Xiao-Tong],
Yan, S.C.[Shui-Cheng],
Yang, J.Y.[Jing-Yu],
Correntropy based feature selection using binary projection,
PR(44), No. 12, December 2011, pp. 2834-2842.
Elsevier DOI
1107
Feature selection, Mutual information, Correntropy, Binary projection matrix
BibRef
Yan, H.[Hui],
Yang, J.[Jian],
Sparse discriminative feature selection,
PR(48), No. 5, 2015, pp. 1827-1835.
Elsevier DOI
1502
Joint feature selection
BibRef
Yan, H.[Hui],
Yang, W.K.[Wan-Kou],
Yang, J.[Jian],
Yang, J.Y.[Jing-Yu],
Discriminant feature extraction based on center distance,
ICIP09(1249-1252).
IEEE DOI
0911
BibRef
Yan, H.[Hui],
Yang, J.[Jian],
Joint Laplacian feature weights learning,
PR(47), No. 3, 2014, pp. 1425-1432.
Elsevier DOI
1312
Feature selection
BibRef
Yan, H.[Hui],
Jin, Z.[Zhong],
Yang, J.[Jian],
Sparse Representation Preserving for Unsupervised Feature Selection,
ICPR14(1574-1578)
IEEE DOI
1412
Face
BibRef
Zheng, W.M.[Wen-Ming],
Lin, Z.C.[Zhou-Chen],
A new discriminant subspace analysis approach for multi-class problems,
PR(45), No. 4, April 2012, pp. 1426-1435.
Elsevier DOI
1112
Fukunaga-Koontz Transform, Common principal component analysis;
Feature extraction
BibRef
Yan, J.J.[Jing-Jie],
Zheng, W.M.[Wen-Ming],
Zhou, X.Y.[Xiao-Yan],
Zhao, Z.J.[Zhi-Jian],
Sparse 2-D Canonical Correlation Analysis via Low Rank Matrix
Approximation for Feature Extraction,
SPLetters(19), No. 1, January 2012, pp. 51-54.
IEEE DOI
1112
BibRef
Shi, C.J.[Cai-Juan],
Ruan, Q.Q.[Qiu-Qi],
An, G.Y.[Gao-Yun],
Zhao, R.Z.[Rui-Zhen],
Hessian Semi-Supervised Sparse Feature Selection Based on L_2,1/2
-Matrix Norm,
MultMed(17), No. 1, January 2015, pp. 16-28.
IEEE DOI
1502
Hessian matrices
BibRef
Shi, C.J.[Cai-Juan],
Ruan, Q.Q.[Qiu-Qi],
An, G.Y.[Gao-Yun],
Ge, C.[Chao],
Semi-supervised sparse feature selection based on multi-view
Laplacian regularization,
IVC(41), No. 1, 2015, pp. 1-10.
Elsevier DOI
1508
Multi-view learning
BibRef
Shi, C.J.[Cai-Juan],
An, G.Y.[Gao-Yun],
Zhao, R.Z.[Rui-Zhen],
Ruan, Q.Q.[Qiu-Qi],
Tian, Q.[Q1],
Multiview Hessian Semisupervised Sparse Feature Selection for
Multimedia Analysis,
CirSysVideo(27), No. 9, September 2017, pp. 1947-1961.
IEEE DOI
1709
Algorithm design and analysis, Geometry, Information science,
Kernel, Laplace equations, Manifolds, Semisupervised learning,
3D motion analysis, Hessian regularization, image annotation,
multiview learning, sparse feature selection, video, concept, detection
BibRef
Zhang, L.F.[Le-Fei],
Zhang, Q.[Qian],
Zhang, L.P.[Liang-Pei],
Tao, D.C.[Da-Cheng],
Huang, X.[Xin],
Du, B.[Bo],
Ensemble manifold regularized sparse low-rank approximation for
multiview feature embedding,
PR(48), No. 10, 2015, pp. 3102-3112.
Elsevier DOI
1507
Multiview
BibRef
Hou, C.,
Jiao, Y.,
Nie, F.,
Luo, T.,
Zhou, Z.H.,
2D Feature Selection by Sparse Matrix Regression,
IP(26), No. 9, September 2017, pp. 4255-4268.
IEEE DOI
1708
convergence, feature selection,
image classification, optimisation, regression analysis,
sparse matrices, 2D feature selection, 2D matrix data, SMR,
data points, effective optimization method,
image processing, matrix elements, provable convergence behavior,
regression coefficients, scene classification,
sparse constraints, sparse matrix regression,
vector-based approaches, Algorithm design and analysis,
Feature extraction, Matrix converters, Radio frequency, Robustness,
Sparse matrices, Training, Two dimensional data, feature selection,
scene classification, sparse matrix regression
BibRef
Foroughi, H.[Homa],
Ray, N.[Nilanjan],
Zhang, H.[Hong],
Object Classification With Joint Projection and Low-Rank Dictionary
Learning,
IP(27), No. 2, February 2018, pp. 806-821.
IEEE DOI
1712
Dictionaries, Lighting, Noise measurement, Training,
Joint projection and dictionary learning,
sparse representation
BibRef
Foroughi, H.[Homa],
Shakeri, M.[Moein],
Ray, N.[Nilanjan],
Zhang, H.[Hong],
Face Recognition Using Multi-Modal Low-Rank Dictionary Learning,
ICIP17(1082-1086)
IEEE DOI
1803
BibRef
Earlier:
Joint Feature Selection with Low-rank Dictionary Learning,
BMVC15(xx-yy).
DOI Link
1601
Dictionaries, Face, Face recognition, Feature extraction, Lighting,
Machine learning, Robustness, Face recognition,
Multi-modal dictionary learning
BibRef
Huang, X.J.[Xiao-Juan],
Zhang, L.[Li],
Wang, B.J.[Bang-Jun],
Zhang, Z.[Zhao],
Li, F.Z.[Fan-Zhang],
Feature weight estimation based on dynamic representation and
neighbor sparse reconstruction,
PR(81), 2018, pp. 388-403.
Elsevier DOI
1806
Feature weighting, Feature selection, Relief, Sparse learning,
Local hyperplane, regularization, Classification
BibRef
Zhu, Y.H.[Yong-Hua],
Zhang, X.J.[Xue-Jun],
Hu, R.Y.[Rong-Yao],
Wen, G.Q.[Guo-Qiu],
Adaptive structure learning for low-rank supervised feature selection,
PRL(109), 2018, pp. 89-96.
Elsevier DOI
1806
Adaptive structure learning, Sparsity representation,
Local structure preservation
BibRef
Yi, Y.[Yugen],
Zhou, W.[Wei],
Liu, Q.H.[Qing-Hua],
Luo, G.L.[Guo-Liang],
Wang, J.Z.[Jian-Zhong],
Fang, Y.M.[Yu-Ming],
Zheng, C.X.[Cai-Xia],
Ordinal preserving matrix factorization for unsupervised feature
selection,
SP:IC(67), 2018, pp. 118-131.
Elsevier DOI
1808
Unsupervised feature selection, Matrix factorization,
Ordinal locality structure preserving, Sparsity and low redundancy
BibRef
Chen, X.H.[Xiu-Hong],
Lu, Y.[Yun],
Robust graph regularised sparse matrix regression for two-dimensional
supervised feature selection,
IET-IPR(14), No. 9, 20 July 2020, pp. 1740-1749.
DOI Link
2007
BibRef
Lu, Y.[Yun],
Chen, X.H.[Xiu-Hong],
Joint Feature Weighting and Adaptive Graph-Based Matrix Regression
for Image Supervised Feature Selection,
SP:IC(90), 2021, pp. 116044.
Elsevier DOI
2012
Matrix regression, Feature selection, Feature weight matrix,
Graph matrix, Classification
BibRef
Chen, X.H.[Xiu-Hong],
Lu, Y.[Yun],
Zhang, J.[Jun],
Zhu, X.Y.[Xing-Yu],
Margin-based discriminant embedding guided sparse matrix regression
for image supervised feature selection,
CVIU(212), 2021, pp. 103273.
Elsevier DOI
2110
Two dimensional image, Supervised feature selection,
Sparse matrix regression, Margin, Discriminant embedding, Classification
BibRef
Zhu, X.Y.[Xing-Yu],
Chen, X.H.[Xiu-Hong],
Low-rank nonnegative sparse representation and local
preservation-based matrix regression for supervised image feature
selection,
IET-IPR(15), No. 13, 2021, pp. 3021-3036.
DOI Link
2110
BibRef
Chen, X.H.[Xiu-Hong],
Zhu, X.Y.[Xing-Yu],
Lu, Y.[Yun],
Pu, Z.F.[Zhi-Fang],
Non-negative low-rank adaptive preserving sparse matrix regression
model for supervised image feature selection and classification,
IET-IPR(17), No. 7, 2023, pp. 2056-2071.
DOI Link
2305
adaptive graph matrix, classification, feature selection,
low-rank representation, non-negative constraint
BibRef
Zhou, J.T.Y.[Joey Tian-Yi],
Feature Selection With Multi-Source Transfer,
CirSysVideo(32), No. 5, May 2022, pp. 2638-2646.
IEEE DOI
2205
Feature extraction, Support vector machines, Training,
Training data, Linear programming,
sparsity optimization
BibRef
Shang, R.H.[Rong-Hua],
Kong, J.R.[Jia-Rui],
Zhang, W.T.[Wei-Tong],
Feng, J.[Jie],
Jiao, L.C.[Li-Cheng],
Stolkin, R.[Rustam],
Uncorrelated feature selection via sparse latent representation and
extended OLSDA,
PR(132), 2022, pp. 108966.
Elsevier DOI
2209
Unsupervised feature selection, Sparse latent representation,
OLSDA, Pseudo-labels, Uncorrelated constraints
BibRef
Kong, J.R.[Jia-Rui],
Shang, R.H.[Rong-Hua],
Zhang, W.T.[Wei-Tong],
Wang, C.[Chao],
Xu, S.[Songhua],
Robust feature selection via central point link information and
sparse latent representation,
PR(154), 2024, pp. 110617.
Elsevier DOI
2406
Center matrix, Link information, Sparse latent representation,
Unsupervised feature selection, Dual graph structure
BibRef
Wang, J.Y.[Jing-Yu],
Wang, H.M.[Hong-Mei],
Nie, F.P.[Fei-Ping],
Li, X.L.[Xue-Long],
Sparse feature selection via fast embedding spectral analysis,
PR(139), 2023, pp. 109472.
Elsevier DOI
2304
Unsupervised learning, Feature selection, Spectral analysis,
Sparse subspace, -Norm
BibRef
Nie, F.P.[Fei-Ping],
Xie, F.Y.[Fang-Yuan],
Yu, W.Z.[Wei-Zhong],
Li, X.L.[Xue-Long],
Parameter-Insensitive Min Cut Clustering With Flexible Size
Constrains,
PAMI(46), No. 8, August 2024, pp. 5479-5492.
IEEE DOI
2407
Clustering algorithms, Optimization, Clustering methods,
NP-hard problem, Vectors, Task analysis, Symmetric matrices, min cut
BibRef
Li, G.Q.[Guo-Quan],
Yang, L.X.[Lin-Xi],
Zhao, K.Q.[Ke-Quan],
A unified model for the sparse optimal scoring problem,
PR(133), 2023, pp. 108976.
Elsevier DOI
2210
Optimal scoring, Linear discriminant analysis,
Feature selection, norm, Sparseness
BibRef
Jiang, B.[Bo],
Wang, B.B.[Bei-Bei],
Luo, B.[Bin],
Sparse norm regularized attribute selection for graph neural networks,
PR(137), 2023, pp. 109265.
Elsevier DOI
2302
Graph neural networks, Feature selection,
Sparse regularization, Semi-supervised learning
BibRef
Zhou, P.[Peng],
Chen, J.Y.[Jiang-Yong],
Du, L.[Liang],
Li, X.J.[Xue-Jun],
Balanced Spectral Feature Selection,
Cyber(53), No. 7, July 2023, pp. 4232-4244.
IEEE DOI
2307
Feature extraction, Periodic structures, Unsupervised learning,
Time complexity, Task analysis, Sparse matrices,
unsupervised learning
BibRef
Qian, W.B.[Wen-Bin],
Liu, J.[Jiale],
Yang, W.J.[Wen-Ji],
Huang, J.T.[Jin-Tao],
Ding, W.P.[Wei-Ping],
Partial label feature selection based on noisy manifold and label
distribution,
PR(156), 2024, pp. 110791.
Elsevier DOI
2408
Feature selection, Label distribution, Manifold learning,
Feature dependency, Partial label learning
BibRef
Sheikhpour, R.[Razieh],
Berahmand, K.[Kamal],
Mohammadi, M.[Mehrnoush],
Khosravi, H.[Hassan],
Sparse feature selection using hypergraph Laplacian-based
semi-supervised discriminant analysis,
PR(157), 2025, pp. 110882.
Elsevier DOI
2409
Semi-supervised feature selection, Semi-supervised discriminant analysis,
Hypergraph-Laplacian, Sparse models
BibRef
Yang, H.C.[Hai-Chuan],
Huang, Y.J.[Yi-Jun],
Tran, L.[Lam],
Liu, J.[Ji],
Huang, S.[Shuai],
On Benefits of Selection Diversity via Bilevel Exclusive Sparsity,
CVPR16(5945-5954)
IEEE DOI
1612
BibRef
Liu, B.Y.[Bing-Yuan],
Liu, J.[Jing],
Bai, X.[Xiao],
Lu, H.Q.[Han-Qing],
Regularized Hierarchical Feature Learning with Non-negative Sparsity
and Selectivity for Image Classification,
ICPR14(4293-4298)
IEEE DOI
1412
Biological system modeling
BibRef
Liu, M.X.[Ming-Xia],
Sun, D.[Dan],
Zhang, D.I.[Daoq-Iang],
Sparsity Score: A new filter feature selection method based on graph,
ICPR12(959-962).
WWW Link.
1302
BibRef
Yang, J.[Jian],
Chu, D.[Delin],
Sparse Representation Classifier Steered Discriminative Projection,
ICPR10(694-697).
IEEE DOI
1008
BibRef
Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
Projection Learning .