17.1.3.5.11 Wearable Exoskeleton

Chapter Contents (Back)
Exoskeleton.
See also Rehabilitation Systems, Prosthesis Systems, Control.

Niyetkaliyev, A.S., Hussain, S., Ghayesh, M.H., Alici, G.,
Review on Design and Control Aspects of Robotic Shoulder Rehabilitation Orthoses,
HMS(47), No. 6, December 2017, pp. 1134-1145.
IEEE DOI 1712
DC motors, Exoskeletons, Manipulators, Medical treatment, Orthopedic procedures, Patient rehabilitation, Shoulder, Actuation, stroke BibRef

Hamaya, M.[Masashi], Matsubara, T.[Takamitsu], Noda, T.[Tomoyuki], Teramae, T.[Tatsuya], Morimoto, J.[Jun],
Learning assistive strategies for exoskeleton robots from user-robot physical interaction,
PRL(99), No. 1, 2017, pp. 67-76.
Elsevier DOI 1710
Exoskeleton robot BibRef

Wu, Q., Wang, X., Chen, B., Wu, H.,
Development of a Minimal-Intervention-Based Admittance Control Strategy for Upper Extremity Rehabilitation Exoskeleton,
SMCS(48), No. 6, 2018, pp. 1005-1016.
IEEE DOI 1805
Exoskeletons, Extremities, Medical treatment, Real-time systems, Robots, Training, Trajectory, Admittance control strategy, upper extremity exoskeleton BibRef

Brahmi, B., Saad, M., Rahman, M.H., Ochoa-Luna, C.,
Cartesian Trajectory Tracking of a 7-DOF Exoskeleton Robot Based on Human Inverse Kinematics,
SMCS(49), No. 3, March 2019, pp. 600-611.
IEEE DOI 1902
Robots, Exoskeletons, Kinematics, Elbow, Shoulder, Medical treatment, Wrist, Backstepping controller, exoskeleton robots, robotic rehabilitation BibRef

Ugurlu, B., Oshima, H., Sariyildiz, E., Narikiyo, T., Babic, J.,
Active Compliance Control Reduces Upper Body Effort in Exoskeleton-Supported Walking,
HMS(50), No. 2, April 2020, pp. 144-153.
IEEE DOI 2004
Compliance control, locomotion control, lower body exoskeleton BibRef

Hussain, S., Jamwal, P.K., van Vliet, P., Ghayesh, M.H.,
State-of-the-Art Robotic Devices for Wrist Rehabilitation: Design and Control Aspects,
HMS(50), No. 5, October 2020, pp. 361-372.
IEEE DOI 2009
Wrist, Rehabilitation robotics, Exoskeletons, Medical treatment, Brushless DC motors, Actuation, control paradigm, wrist orthosis BibRef

Jamwal, P.K., Hussain, S., Tsoi, Y.H., Xie, S.Q.,
Musculoskeletal Model for Path Generation and Modification of an Ankle Rehabilitation Robot,
HMS(50), No. 5, October 2020, pp. 373-383.
IEEE DOI 2009
Rehabilitation robotics, Ligaments, Joints, Bones, Springs, Ankle joint musculoskeletal modeling, robot path generation and modification BibRef

Liu, D.X.[Du-Xin], Xu, J.[Jing], Chen, C.J.[Chun-Jie], Long, X.G.[Xing-Guo], Tao, D.C.[Da-Cheng], Wu, X.Y.[Xin-Yu],
Vision-Assisted Autonomous Lower-Limb Exoskeleton Robot,
SMCS(51), No. 6, June 2021, pp. 3759-3770.
IEEE DOI 2106
Legged locomotion, Exoskeletons, Planning, Cameras, Visualization, Decision making, Autonomous decision-making, lower-limb exoskeleton robot BibRef

Sanz-Pena, I.[Inigo], Blanco, J.[Julio], Kim, J.H.[Joo H.],
Computer Interface for Real-Time Gait Biofeedback Using a Wearable Integrated Sensor System for Data Acquisition,
HMS(51), No. 5, October 2021, pp. 484-493.
IEEE DOI 2109
Exoskeletons, Robots, Training, Knee, Kinematics, Computer interfaces, Real-time systems, Biofeedback (BF) computer interface, wearable sensors BibRef

Wang, X.Y.[Xiang-Yang], Guo, S.[Sheng], Qu, B.J.[Bo-Jian], Bai, S.P.[Shao-Ping],
Design and Experimental Verification of a Hip Exoskeleton Based on Human-Machine Dynamics for Walking Assistance,
HMS(53), No. 1, February 2023, pp. 85-97.
IEEE DOI 2301
Exoskeleton, Wearable robots, Legged locomotion, Hip, Dynamics, hip exoskeleton, parallel mechanism, walking assistance, wearable robot BibRef

Verdel, D.[Dorian], Sahm, G.[Guillaume], Bastide, S.[Simon], Bruneau, O.[Olivier], Berret, B.[Bastien], Vignais, N.[Nicolas],
Influence of the Physical Interface on the Quality of Human-Exoskeleton Interaction,
HMS(53), No. 1, February 2023, pp. 44-53.
IEEE DOI 2301
Exoskeletons, Elbow, Robot sensing systems, Particle measurements, Atmospheric measurements, Force measurement, self-aligning mechanism BibRef

Wijegunawardana, I.[Isira], Ranaweera, R.K.P.S., Gopura, R.A.R.C.,
Lower Extremity Posture Assistive Wearable Devices: A Review,
HMS(53), No. 1, February 2023, pp. 98-112.
IEEE DOI 2301
Assistive devices, Wearable computers, Databases, Patents, Pain, Exoskeletons, Stress, Bodyweight support, work-related musculoskeletal disorders (WMSDs) BibRef

Samper-Escudero, J.L.[José Luis], Coloma, S.[Sofía], Olivares-Mendez, M.A.[Miguel Angel], González, M.Á.S.U.[Miguel Ángel Sanchez-Urán], Ferre, M.[Manuel],
A Compact and Portable Exoskeleton for Shoulder and Elbow Assistance for Workers and Prospective Use in Space,
HMS(53), No. 4, August 2023, pp. 668-677.
IEEE DOI 2308
Exoskeletons, Shoulder, Elbow, Muscles, Clamps, Mechanical cables, Fabrics, Assistive robot, compliant mechanism, compliant robot, upper limbs BibRef

Li, G.X.[Guo-Xin], Li, Z.J.[Zhi-Jun], Su, C.Y.[Chun-Yi], Xu, T.[Tian],
Active Human-Following Control of an Exoskeleton Robot With Body Weight Support,
Cyber(53), No. 11, November 2023, pp. 7367-7379.
IEEE DOI 2310
BibRef

de Oliveira, A.C.[Ana C.], Deshpande, A.D.[Ashish D.],
Assessment of Upper-Body Movement Quality in the Cartesian-Space is Feasible in the Harmony Exoskeleton,
HMS(53), No. 6, December 2023, pp. 985-995.
IEEE DOI 2312
BibRef

Wu, X.Y.[Xin-Yu], Li, J.[Jinke], Liu, L.[Liu], Tao, D.C.[Da-Cheng],
The Visual Footsteps Planning System for Exoskeleton Robots Under Complex Terrain,
SMCS(53), No. 8, August 2023, pp. 5149-5160.
IEEE DOI 2307
Robots, Exoskeletons, Planning, Legged locomotion, Visualization, Trajectory, Virtual reality, Bezier curve, exoskeleton robot, stereo vision BibRef

Huang, P.[Pengbo], Li, Z.J.[Zhi-Jun], Zhou, M.[Mengchu], Kan, Z.[Zhen],
Divergent Component of Motion Planning and Adaptive Repetitive Control for Wearable Walking Exoskeletons,
Cyber(54), No. 4, April 2024, pp. 2244-2256.
IEEE DOI 2403
Legged locomotion, Trajectory, Exoskeletons, Tracking, Robots, Planning, Dynamics, Adaptive repetitive control, walking exoskeleton BibRef

Li, Z.J.[Zhi-Jun], Zhang, T.[Tao], Huang, P.[Pengbo], Li, G.X.[Guo-Xin],
Human-in-the-Loop Cooperative Control of a Walking Exoskeleton for Following Time-Variable Human Intention,
Cyber(54), No. 4, April 2024, pp. 2142-2154.
IEEE DOI 2403
Exoskeletons, Legged locomotion, Robots, Impedance, Human in the loop, Trajectory, Hip, Barrier Lyapunov function, walking exoskeleton BibRef


Charoenseang, S.[Siam], Panjan, S.[Sarut],
4 DOF Exoskeleton Robotic Arm System for Rehabilitation and Training,
DHM18(147-157).
Springer DOI 1807
BibRef

López-Delis, A.[Alberto], Ruiz-Olaya, A.F.[Andrés Felipe], Freire-Bastos, T.[Teodiano],
A Comparison of Myoelectric Pattern Recognition Methods to Control an Upper Limb Active Exoskeleton,
CIARP13(II:100-107).
Springer DOI 1311
Surface Electromyography. BibRef

Chapter on Motion -- Human Motion, Surveillance, Tracking, Surveillance, Activities continues in
Ergonomic Studies, Ergonomic Analysis .


Last update:Apr 18, 2024 at 11:38:49