Sima, C.[Chao],
Dougherty, E.R.[Edward R.],
Optimal convex error estimators for classification,
PR(39), No. 9, September 2006, pp. 1763-1780.
Elsevier DOI
WWW Link.
0606
Bootstrap, Cross-validation, Error estimation;
Feature-set ranking, Optimal estimation, Resubstitution,
BibRef
Wei, H.L.[Hua-Liang],
Billings, S.A.,
Feature Subset Selection and Ranking for Data Dimensionality Reduction,
PAMI(29), No. 1, January 2007, pp. 162-166.
IEEE DOI
0701
Forward Orthogonal Search. Select features 1 at a time.
BibRef
Liang, J.N.[Jian-Ning],
Yang, S.[Su],
Winstanley, A.[Adam],
Invariant optimal feature selection:
A distance discriminant and feature ranking based solution,
PR(41), No. 5, May 2008, pp. 1429-1439.
Elsevier DOI
0711
Optimal feature selection, Distance discriminant, Feature ranking
BibRef
Yang, S.[Su],
Liang, J.N.[Jian-Ning],
Wang, Y.Y.[Yuan-Yuan],
Winstanley, A.[Adam],
Feature Selection Based on Run Covering,
PSIVT06(208-217).
Springer DOI
0612
BibRef
Hong, Y.[Yi],
Kwong, S.[Sam],
Chang, Y.C.[Yu-Chou],
Ren, Q.S.[Qing-Sheng],
Consensus unsupervised feature ranking from multiple views,
PRL(29), No. 5, 1 April 2008, pp. 595-602.
Elsevier DOI
0802
Clustering, Feature ranking ensembles, Unsupervised feature selection
BibRef
Uematsu, K.,
Lee, Y.,
Statistical Optimality in Multipartite Ranking and Ordinal Regression,
PAMI(37), No. 5, May 2015, pp. 1080-1094.
IEEE DOI
1504
Measurement
BibRef
Bellal, F.[Fazia],
Elghazel, H.[Haytham],
Aussem, A.[Alex],
A semi-supervised feature ranking method with ensemble learning,
PRL(33), No. 10, 15 July 2012, pp. 1426-1433.
Elsevier DOI
1205
Semi-supervised learning, Feature selection, Ensemble learning
BibRef
Hernandez-Leal, P.[Pablo],
Carrasco-Ochoa, J.A.[J. Ariel],
Martínez-Trinidad, J.F.[José Francisco],
Olvera-Lopez, J.A.[J. Arturo],
InstanceRank based on borders for instance selection,
PR(46), No. 1, January 2013, pp. 365-375.
Elsevier DOI
1209
Instance selection, Instance ranking, Border instances, Supervised
classification
BibRef
Olvera-López, J.A.[J. Arturo],
Martínez-Trinidad, J.F.[José Francisco],
Carrasco-Ochoa, J.A.[J. Ariel],
Mixed Data Object Selection Based on Clustering and Border Objects,
CIARP07(674-683).
Springer DOI
0711
Instance selection.
BibRef
Hernandez-Rodriguez, S.[Selene],
Martínez-Trinidad, J.F.[José Francisco],
Carrasco-Ochoa, J.A.[J. Ariel],
On the selection of base prototypes for LAESA and TLAESA classifiers,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Jiang, Y.G.[Yu-Gang],
Wang, J.[Jun],
Xue, X.,
Chang, S.F.[Shih-Fu],
Query-Adaptive Image Search With Hash Codes,
MultMed(15), No. 2, 2013, pp. 442-453.
IEEE DOI
1302
BibRef
Jiang, Y.G.[Yu-Gang],
Wang, J.[Jun],
Chang, S.F.[Shih-Fu],
Lost in binarization: query-adaptive ranking for similar image search
with compact codes,
ICMR11(16).
DOI Link
1301
BibRef
And: A2, A1, A3:
Label diagnosis through self tuning for web image search,
CVPR09(1390-1397).
IEEE DOI
0906
Are the initial label good?
BibRef
Cánovas-García, F.[Fulgencio],
Alonso-Sarría, F.[Francisco],
Optimal Combination of Classification Algorithms and Feature Ranking
Methods for Object-Based Classification of Submeter Resolution
Z/I-Imaging DMC Imagery,
RS(7), No. 4, 2015, pp. 4651-4677.
DOI Link
1505
BibRef
Lee, J.S.[Jae-Sung],
Kim, D.W.[Dae-Won],
Feature selection for multi-label classification using multivariate
mutual information,
PRL(34), No. 3, 1 February 2013, pp. 349-357.
Elsevier DOI
1301
Multi-label feature selection, Multivariate feature selection;
Multivariate mutual information, Label dependency
BibRef
Lee, J.S.[Jae-Sung],
Kim, D.W.[Dae-Won],
SCLS: Multi-label feature selection based on scalable criterion for
large label set,
PR(66), No. 1, 2017, pp. 342-352.
Elsevier DOI
1704
Machine learning
BibRef
Lim, H.K.[Hyun-Ki],
Kim, D.W.[Dae-Won],
Convex optimization approach for multi-label feature selection based
on mutual information,
ICPR16(1512-1517)
IEEE DOI
1705
Convex functions, Entropy, Linear programming, Mutual information,
Optimization, Redundancy, Time, complexity
BibRef
Lim, H.K.[Hyun-Ki],
Lee, J.S.[Jae-Sung],
Kim, D.W.[Dae-Won],
Accelerating Multi-Label Feature Selection Based on Low-Rank
Approximation,
IEICE(E99-D), No. 5, May 2016, pp. 1396-1399.
WWW Link.
1605
BibRef
Lim, H.K.[Hyun-Ki],
Low-rank learning for feature selection in multi-label classification,
PRL(172), 2023, pp. 106-112.
Elsevier DOI
2309
Multi-label classification, Feature selection, Low-rank learning
BibRef
Lim, H.K.[Hyun-Ki],
Lee, J.S.[Jae-Sung],
Kim, D.W.[Dae-Won],
Optimization approach for feature selection in multi-label
classification,
PRL(89), No. 1, 2017, pp. 25-30.
Elsevier DOI
1704
Multi-label feature selection
BibRef
Lee, J.S.[Jae-Sung],
Kim, D.W.[Dae-Won],
Fast multi-label feature selection based on information-theoretic
feature ranking,
PR(48), No. 9, 2015, pp. 2761-2771.
Elsevier DOI
1506
Multi-label feature selection
BibRef
Senawi, A.[Azlyna],
Wei, H.L.[Hua-Liang],
Billings, S.A.[Stephen A.],
A new maximum relevance-minimum multicollinearity (MRmMC) method for
feature selection and ranking,
PR(67), No. 1, 2017, pp. 47-61.
Elsevier DOI
1704
Dimensionality reduction
BibRef
Ji, Z.,
Cui, B.,
Li, H.,
Jiang, Y.,
Xiang, T.,
Hospedales, T.M.[Timothy M.],
Fu, Y.,
Deep Ranking for Image Zero-Shot Multi-Label Classification,
IP(29), 2020, pp. 6549-6560.
IEEE DOI
2007
Testing, Training, Predictive models, Semantics, Correlation,
Visualization, Training data, Multi-label classification,
transductive learning
BibRef
Chen, Z.M.[Zhao-Min],
Cui, Q.[Quan],
Wei, X.S.[Xiu-Shen],
Jin, X.[Xin],
Guo, Y.[Yanwen],
Disentangling, Embedding and Ranking Label Cues for Multi-Label Image
Recognition,
MultMed(23), 2021, pp. 1827-1840.
IEEE DOI
2107
Correlation, Image recognition, Streaming media,
Recurrent neural networks, Task analysis, Computational modeling,
ranking
BibRef
Viola, R.[Rémi],
Gautheron, L.[Léo],
Habrard, A.[Amaury],
Sebban, M.[Marc],
MetaAP: A meta-tree-based ranking algorithm optimizing the average
precision from imbalanced data,
PRL(161), 2022, pp. 161-167.
Elsevier DOI
2209
Imbalanced learning, Tree-based ranking, Average precision, Interpretability
BibRef
Fu, Z.[Zheren],
Mao, Z.D.[Zhen-Dong],
Yan, C.G.[Cheng-Gang],
Liu, A.A.[An-An],
Xie, H.T.[Hong-Tao],
Zhang, Y.D.[Yong-Dong],
Self-Supervised Synthesis Ranking for Deep Metric Learning,
CirSysVideo(32), No. 7, July 2022, pp. 4736-4750.
IEEE DOI
2207
Measurement, Semantics, Transforms, Training, Task analysis,
Coordinate measuring machines, Manifolds, Deep metric learning,
generative model
BibRef
Geng, X.[Xin],
Zheng, R.Y.[Ren-Yi],
Lv, J.Q.[Jia-Qi],
Zhang, Y.[Yu],
Multilabel Ranking with Inconsistent Rankers,
PAMI(44), No. 9, September 2022, pp. 5211-5224.
IEEE DOI
2208
Training, Predictive models, Adaptation models, Task analysis,
Machine learning, Machine learning algorithms, Encoding
BibRef
Geng, X.[Xin],
Luo, L.[Longrun],
Multilabel Ranking with Inconsistent Rankers,
CVPR14(3742-3747)
IEEE DOI
1409
BibRef
Helm, H.S.[Hayden S.],
Basu, A.[Amitabh],
Athreya, A.[Avanti],
Park, Y.[Youngser],
Vogelstein, J.T.[Joshua T.],
Priebe, C.E.[Carey E.],
Winding, M.[Michael],
Zlatic, M.[Marta],
Cardona, A.[Albert],
Bourke, P.[Patrick],
Larson, J.[Jonathan],
Abdin, M.[Marah],
Choudhury, P.[Piali],
Yang, W.W.[Wei-Wei],
White, C.W.[Christopher W.],
Distance-based positive and unlabeled learning for ranking,
PR(134), 2023, pp. 109085.
Elsevier DOI
2212
Positive-and-unlabeled learning, ranking, network analysis
BibRef
Fu, Y.Q.[Yu-Qian],
Xie, Y.[Yu],
Fu, Y.W.[Yan-Wei],
Jiang, Y.G.[Yu-Gang],
StyleAdv: Meta Style Adversarial Training for Cross-Domain Few-Shot
Learning,
CVPR23(24575-24584)
IEEE DOI
2309
BibRef
Fu, Y.Q.[Yu-Qian],
Fu, Y.W.[Yan-Wei],
Chen, J.J.[Jing-Jing],
Jiang, Y.G.[Yu-Gang],
Generalized Meta-FDMixup: Cross-Domain Few-Shot Learning Guided by
Labeled Target Data,
IP(31), 2022, pp. 7078-7090.
IEEE DOI
2212
Feature extraction, Task analysis, Training, Data models,
Data mining, Benchmark testing, Visualization,
contrastive learning
BibRef
Xu, C.M.[Cheng-Ming],
Fu, Y.W.[Yan-Wei],
Liu, C.[Chen],
Wang, C.J.[Cheng-Jie],
Li, J.L.[Ji-Lin],
Huang, F.Y.[Fei-Yue],
Zhang, L.[Li],
Xue, X.Y.[Xiang-Yang],
Learning Dynamic Alignment via Meta-Filter for Few-Shot Learning,
CVPR21(5178-5187)
IEEE DOI
2111
Visualization, Adaptation models, Semantics,
Benchmark testing, Ordinary differential equations, Information filters
BibRef
Li, P.[Pan],
Gong, S.G.[Shao-Gang],
Wang, C.J.[Cheng-Jie],
Fu, Y.W.[Yan-Wei],
Ranking Distance Calibration for Cross-Domain Few-Shot Learning,
CVPR22(9089-9098)
IEEE DOI
2210
Training, Image retrieval, Encoding, Calibration,
Task analysis, Representation learning
BibRef
Lei, Y.M.[Yi-Ming],
Li, Z.L.[Zi-Long],
Li, Y.Y.[Yang-Yang],
Zhang, J.P.[Jun-Ping],
Shan, H.M.[Hong-Ming],
CORE: Learning consistent ordinal representations with convex
optimization for image ordinal estimation,
PR(156), 2024, pp. 110748.
Elsevier DOI
2408
Predictions with ordered labels (facial age, disease progression, aesthetics).
Ordinal regression, Image ordinal estimation,
Convex optimization, Dual decomposition
BibRef
Sun, X.X.[Xiao-Xiao],
Hou, Y.Z.[Yun-Zhong],
Deng, W.J.[Wei-Jian],
Li, H.D.[Hong-Dong],
Zheng, L.[Liang],
Ranking Models in Unlabeled New Environments,
ICCV21(11741-11751)
IEEE DOI
2203
Measurement, Codes, Annotations, Computational modeling,
Search problems, Task analysis, Image and video retrieval,
Datasets and evaluation
BibRef
Li, Y.D.[Yan-Dong],
Jia, X.[Xuhui],
Sang, R.X.[Ruo-Xin],
Zhu, Y.K.[Yu-Kun],
Green, B.[Bradley],
Wang, L.Q.[Li-Qiang],
Gong, B.Q.[Bo-Qing],
Ranking Neural Checkpoints,
CVPR21(2662-2672)
IEEE DOI
2111
To use in transfer learning.
Deep learning, Training, Network topology, Transfer learning,
Benchmark testing, Feature extraction, Topology
BibRef
Vargas-Ruíz, L.[Lauro],
Franco-Arcega, A.[Anilu],
Alonso-Lavernia, M.[María_de_los_Ángeles],
A Novel Criterion to Obtain the Best Feature Subset from Filter Ranking
Methods,
MCPR18(12-22).
Springer DOI
1807
BibRef
Li, Y.,
Song, Y.,
Luo, J.,
Improving Pairwise Ranking for Multi-label Image Classification,
CVPR17(1837-1845)
IEEE DOI
1711
Adaptation models, Fasteners, Neural networks, Visualization
BibRef
Yao, Y.,
Xin, X.,
Guo, P.,
A rank minimization-based late fusion method for multi-label image
annotation,
ICPR16(847-852)
IEEE DOI
1705
Matrix decomposition, Minimization, Optimization,
Predictive models, Sparse matrices, Training
BibRef
Kanehira, A.,
Harada, T.,
Multi-label Ranking from Positive and Unlabeled Data,
CVPR16(5138-5146)
IEEE DOI
1612
BibRef
Cruz, R.[Ricardo],
Fernandes, K.[Kelwin],
Pinto Costa, J.F.[Joaquim F.],
Ortiz, M.P.[María Pérez],
Cardoso, J.S.[Jaime S.],
Ordinal Class Imbalance with Ranking,
IbPRIA17(3-12).
Springer DOI
1706
BibRef
Nogueira, S.[Sarah],
Sechidis, K.[Konstantinos],
Brown, G.[Gavin],
On the Use of Spearman's Rho to Measure the Stability of Feature
Rankings,
IbPRIA17(381-391).
Springer DOI
1706
stability to training data perturbations.
BibRef
Chen, L.[Lin],
Zhang, Q.A.[Qi-Ang],
Li, B.X.[Bao-Xin],
Predicting Multiple Attributes via Relative Multi-task Learning,
CVPR14(1027-1034)
IEEE DOI
1409
learn ranking functions describing the relative strength of attributes.
BibRef
Shankar, S.[Sukrit],
Lasenby, J.[Joan],
Cipolla, R.[Roberto],
Semantic Transform:
Weakly Supervised Semantic Inference for Relating Visual Attributes,
ICCV13(361-368)
IEEE DOI
1403
Ranking attributes for classification.
Optimization, Ranking, Semantic Descriptions
BibRef
Shi, Z.Y.[Zhi-Yuan],
Siva, P.[Parthipan],
Xiang, T.[Tony],
Transfer Learning by Ranking for Weakly Supervised Object Annotation,
BMVC12(78).
DOI Link
1301
BibRef
Diamantini, C.[Claudia],
Gemelli, A.[Alberto],
Potena, D.[Domenico],
Feature Ranking Based on Decision Border,
ICPR10(609-612).
IEEE DOI
1008
BibRef
Parakhin, M.[Mikhail],
Haluptzok, P.[Patrick],
Finding the Most Probable Ranking of Objects with Probabilistic
Pairwise Preferences,
ICDAR09(616-620).
IEEE DOI
0907
Ranking when pairwise ranking is inconsistent (not transitive).
apply to handwriting.
BibRef
Bucak, S.S.[Serhat S.],
Mallapragada, P.K.[Pavan Kumar],
Jin, R.[Rong],
Jain, A.K.[Anil K.],
Efficient multi-label ranking for multi-class learning:
Application to object recognition,
ICCV09(2098-2105).
IEEE DOI
0909
Not just binary classification. Order the many possible classes.
BibRef
Merler, M.[Michele],
Yan, R.[Rong],
Smith, J.R.[John R.],
Imbalanced RankBoost for efficiently ranking large-scale image/video
collections,
CVPR09(2607-2614).
IEEE DOI
0906
BibRef
Li, Y.[Yun],
Lu, B.L.[Bao-Liang],
Wu, Z.F.[Zhong-Fu],
A Hybrid Method of Unsupervised Feature Selection Based on Ranking,
ICPR06(II: 687-690).
IEEE DOI
0609
BibRef
Zhu, X.Q.[Xing-Quan],
Wu, X.D.[Xin-Dong],
Scalable Representative Instance Selection and Ranking,
ICPR06(III: 352-355).
IEEE DOI
0609
BibRef
Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
Probabilistic Latent Semantic Analysis, pLSA. .