Yin, J.Q.[Jian-Qin],
Wu, Y.C.[Yan-Chun],
Zhu, C.R.[Chao-Ran],
Yin, Z.J.[Zi-Jin],
Liu, H.P.[Hua-Ping],
Dang, Y.H.[Yong-Hao],
Liu, Z.Y.[Zhi-Yi],
Liu, J.[Jun],
Energy-Based Periodicity Mining With Deep Features for Action
Repetition Counting in Unconstrained Videos,
CirSysVideo(31), No. 12, December 2021, pp. 4812-4825.
IEEE DOI
2112
Videos, Feature extraction, Principal component analysis,
Motion segmentation, Task analysis, deep ConvNets
BibRef
Ferreira, B.[Bruno],
Ferreira, P.M.[Pedro M.],
Pinheiro, G.[Gil],
Figueiredo, N.[Nelson],
Carvalho, F.[Filipe],
Menezes, P.[Paulo],
Batista, J.[Jorge],
Deep learning approaches for workout repetition counting and
validation,
PRL(151), 2021, pp. 259-266.
Elsevier DOI
2110
BibRef
Earlier:
Exploring Workout Repetition Counting and Validation Through Deep
Learning,
ICIAR20(I:3-15).
Springer DOI
2007
Workout repetition counting, Human physical activity analysis,
2D Human pose estimation, Deep learning
BibRef
Jacquelin, N.[Nicolas],
Vuillemot, R.[Romain],
Duffner, S.[Stefan],
Periodicity counting in videos with unsupervised learning of cyclic
embeddings,
PRL(161), 2022, pp. 59-66.
Elsevier DOI
2209
Unsupervised learning, Periodicity, Repetition, Embedding, Triplet loss
BibRef
Li, C.X.[Cheng-Xian],
Shao, M.[Ming],
Yang, Q.[Qirui],
Xia, S.[Siyu],
High-precision skeleton-based human repetitive action counting,
IET-CV(17), No. 6, 2023, pp. 700-709.
DOI Link
2310
convolutional neural nets
BibRef
Huang, H.[Hu],
Gou, S.P.[Shui-Ping],
Li, R.M.[Rui-Min],
Gao, X.B.[Xin-Bo],
Joint-Wise Temporal Self-Similarity Periodic Selection Network for
Repetitive Fitness Action Counting,
CirSysVideo(34), No. 10, October 2024, pp. 9808-9821.
IEEE DOI
2411
Feature extraction, Skeleton, Annotations, Task analysis,
Costs, Encoding, Repetitive action counting,
impulse map regression
BibRef
Nguyen, D.D.[Duc Duy],
Nguyen, L.T.[Lam Thanh],
Huang, Y.F.[Yi-Feng],
Pham, C.[Cuong],
Hoai, M.[Minh],
Class-Agnostic Repetitive Action Counting Using Wearable Devices,
PAMI(47), No. 6, June 2025, pp. 4984-4995.
IEEE DOI
2505
Feature extraction, Time series analysis, Vectors, Training,
Data mining, Wearable Health Monitoring Systems, wearable
BibRef
Zhao, Z.Q.[Zheng-Qi],
Huang, X.H.[Xiao-Hu],
Zhou, H.[Hao],
Yao, K.[Kun],
Ding, E.[Errui],
Wang, J.D.[Jing-Dong],
Wang, X.G.[Xing-Gang],
Liu, W.Y.[Wen-Yu],
Bin, F.[Feng],
Skim then Focus: Integrating Contextual and Fine-grained Views for
Repetitive Action Counting,
IJCV(133), No. 9, September 2025, pp. 6347-6361.
Springer DOI
2509
BibRef
Wu, J.Y.[Jin-Ying],
Li, J.[Jun],
Li, Q.M.[Qi-Ming],
SPKDB-Net: A Salient-Part Pose Keypoints-Based Dual-Branch Network
for repetitive action counting,
CVIU(259), 2025, pp. 104434.
Elsevier DOI
2509
Repetitive action counting, Salient-part pose keypoints, Dual-branch network
BibRef
Li, K.[Kun],
Peng, X.G.[Xin-Ge],
Guo, D.[Dan],
Yang, X.[Xun],
Wang, M.[Meng],
Repetitive Action Counting With Hybrid Temporal Relation Modeling,
MultMed(27), 2025, pp. 3844-3855.
IEEE DOI
2507
Videos, Context modeling, Correlation, Visualization, Semantics,
Euclidean distance, Time-frequency analysis, Noise,
video understanding
BibRef
Wang, H.[Hang],
Cheng, Z.Q.[Zhi-Qi],
Du, Y.[Youtian],
Zhang, L.[Lei],
IVAC-P^2L: Leveraging Irregular Repetition Priors for Improving Video
Action Counting,
MultMed(27), 2025, pp. 8325-8339.
IEEE DOI
2511
Videos, Spatiotemporal phenomena, Visualization, Semantics,
Feature extraction, Data mining, Contrastive learning, Training,
cycle-interval inconsistency
BibRef
Zhuo, Y.L.[Yue-Long],
Li, W.L.[Wei-Ling],
Yang, B.B.[Bei-Bei],
Fang, Y.[Yan],
Yuan, H.Q.[Hua-Qiang],
Counting Repetitive Actions in Event Stream,
ICIP24(1670-1675)
IEEE DOI Code:
WWW Link.
2411
Visualization, Accuracy, Codes, Heuristic algorithms,
Time series analysis, Streaming media, Repetitive Actions,
Fast Dynamic Time Warping
BibRef
Luo, Y.[Yanan],
Yi, J.H.[Jin-Hui],
Farha, Y.A.[Yazan Abu],
Wolter, M.[Moritz],
Gall, J.[Juergen],
Rethinking Temporal Self-Similarity For Repetitive Action Counting,
ICIP24(2187-2193)
IEEE DOI
2411
Accuracy, Feeds, Task analysis, Videos, Repetition Counting,
Temporal Self-Similarity
BibRef
Li, X.J.[Xin-Jie\],
Xu, H.J.[Hui-Juan],
Repetitive Action Counting with Motion Feature Learning,
WACV24(6485-6494)
IEEE DOI
2404
Representation learning, Training, Noise, Dynamics, Collaboration,
Task analysis, Algorithms, Video recognition and understanding
BibRef
Sinha, S.[Saptarshi],
Stergiou, A.[Alexandros],
Damen, D.[Dima],
Every Shot Counts: Using Exemplars for Repetition Counting in Videos,
ACCV24(III: 384-402).
Springer DOI
2412
BibRef
Abedi, A.[Ali],
Bisht, P.[Paritosh],
Chatterjee, R.[Riddhi],
Agrawal, R.[Rachit],
Sharma, V.[Vyom],
Jayagopi, D.B.[Dinesh Babu],
Khan, S.S.[Shehroz S.],
Rehabilitation Exercise Repetition Segmentation and Counting Using
Skeletal Body Joints,
CRV23(288-295)
IEEE DOI
2406
Analytical models, Privacy, Data privacy, Computational modeling,
Neural networks, Patient rehabilitation, exercise segmentation,
virtual rehabilitation
BibRef
Hu, H.Z.[Hua-Zhang],
Dong, S.[Sixun],
Zhao, Y.Q.[Yi-Qun],
Lian, D.Z.[Dong-Ze],
Li, Z.X.[Zheng-Xin],
Gao, S.H.[Sheng-Hua],
TransRAC: Encoding Multi-scale Temporal Correlation with Transformers
for Repetitive Action Counting,
CVPR22(18991-19000)
IEEE DOI
2210
Degradation, Correlation, Codes, Annotations, Face recognition,
Pose estimation, Action and event recognition,
Pose estimation and tracking
BibRef
Zhang, Y.H.[Yun-Hua],
Shao, L.[Ling],
Snoek, C.G.M.[Cees G. M.],
Repetitive Activity Counting by Sight and Sound,
CVPR21(14065-14074)
IEEE DOI
2111
Visualization, Analytical models, Codes, Estimation,
Cameras
BibRef
Zhang, H.D.[Huai-Dong],
Xu, X.M.[Xue-Miao],
Han, G.Q.[Guo-Qiang],
He, S.F.[Sheng-Feng],
Context-Aware and Scale-Insensitive Temporal Repetition Counting,
CVPR20(667-675)
IEEE DOI
2008
Videos, Feature extraction, Benchmark testing, Estimation,
Training, Context modeling
BibRef
Levy, O.[Ofir],
Wolf, L.B.[Lior B.],
Live Repetition Counting,
ICCV15(3020-3028)
IEEE DOI
1602
Count Repetitions of an action.
BibRef
Chapter on Motion -- Human Motion, Surveillance, Tracking, Surveillance, Activities continues in
Human ID Using Gait, Recognition of People Through Gait .