17.1.3.6.4 Action Counting, Repetition Counts

Chapter Contents (Back)
Action Counting. Repetitive Motion.
See also Counting Instances, Counting Objects.
See also Counting People, Transportation System Monitoring, Queues.
See also Counting People, Crowds, Crowd Counting.
See also Dense Object Detection.

Yin, J.Q.[Jian-Qin], Wu, Y.C.[Yan-Chun], Zhu, C.R.[Chao-Ran], Yin, Z.J.[Zi-Jin], Liu, H.P.[Hua-Ping], Dang, Y.H.[Yong-Hao], Liu, Z.Y.[Zhi-Yi], Liu, J.[Jun],
Energy-Based Periodicity Mining With Deep Features for Action Repetition Counting in Unconstrained Videos,
CirSysVideo(31), No. 12, December 2021, pp. 4812-4825.
IEEE DOI 2112
Videos, Feature extraction, Principal component analysis, Motion segmentation, Task analysis, deep ConvNets BibRef

Ferreira, B.[Bruno], Ferreira, P.M.[Pedro M.], Pinheiro, G.[Gil], Figueiredo, N.[Nelson], Carvalho, F.[Filipe], Menezes, P.[Paulo], Batista, J.[Jorge],
Deep learning approaches for workout repetition counting and validation,
PRL(151), 2021, pp. 259-266.
Elsevier DOI 2110
BibRef
Earlier:
Exploring Workout Repetition Counting and Validation Through Deep Learning,
ICIAR20(I:3-15).
Springer DOI 2007
Workout repetition counting, Human physical activity analysis, 2D Human pose estimation, Deep learning BibRef

Jacquelin, N.[Nicolas], Vuillemot, R.[Romain], Duffner, S.[Stefan],
Periodicity counting in videos with unsupervised learning of cyclic embeddings,
PRL(161), 2022, pp. 59-66.
Elsevier DOI 2209
Unsupervised learning, Periodicity, Repetition, Embedding, Triplet loss BibRef

Li, C.X.[Cheng-Xian], Shao, M.[Ming], Yang, Q.[Qirui], Xia, S.[Siyu],
High-precision skeleton-based human repetitive action counting,
IET-CV(17), No. 6, 2023, pp. 700-709.
DOI Link 2310
convolutional neural nets BibRef

Huang, H.[Hu], Gou, S.P.[Shui-Ping], Li, R.M.[Rui-Min], Gao, X.B.[Xin-Bo],
Joint-Wise Temporal Self-Similarity Periodic Selection Network for Repetitive Fitness Action Counting,
CirSysVideo(34), No. 10, October 2024, pp. 9808-9821.
IEEE DOI 2411
Feature extraction, Skeleton, Annotations, Task analysis, Costs, Encoding, Repetitive action counting, impulse map regression BibRef

Nguyen, D.D.[Duc Duy], Nguyen, L.T.[Lam Thanh], Huang, Y.F.[Yi-Feng], Pham, C.[Cuong], Hoai, M.[Minh],
Class-Agnostic Repetitive Action Counting Using Wearable Devices,
PAMI(47), No. 6, June 2025, pp. 4984-4995.
IEEE DOI 2505
Feature extraction, Time series analysis, Vectors, Training, Data mining, Wearable Health Monitoring Systems, wearable BibRef

Zhao, Z.Q.[Zheng-Qi], Huang, X.H.[Xiao-Hu], Zhou, H.[Hao], Yao, K.[Kun], Ding, E.[Errui], Wang, J.D.[Jing-Dong], Wang, X.G.[Xing-Gang], Liu, W.Y.[Wen-Yu], Bin, F.[Feng],
Skim then Focus: Integrating Contextual and Fine-grained Views for Repetitive Action Counting,
IJCV(133), No. 9, September 2025, pp. 6347-6361.
Springer DOI 2509
BibRef

Wu, J.Y.[Jin-Ying], Li, J.[Jun], Li, Q.M.[Qi-Ming],
SPKDB-Net: A Salient-Part Pose Keypoints-Based Dual-Branch Network for repetitive action counting,
CVIU(259), 2025, pp. 104434.
Elsevier DOI 2509
Repetitive action counting, Salient-part pose keypoints, Dual-branch network BibRef

Li, K.[Kun], Peng, X.G.[Xin-Ge], Guo, D.[Dan], Yang, X.[Xun], Wang, M.[Meng],
Repetitive Action Counting With Hybrid Temporal Relation Modeling,
MultMed(27), 2025, pp. 3844-3855.
IEEE DOI 2507
Videos, Context modeling, Correlation, Visualization, Semantics, Euclidean distance, Time-frequency analysis, Noise, video understanding BibRef

Wang, H.[Hang], Cheng, Z.Q.[Zhi-Qi], Du, Y.[Youtian], Zhang, L.[Lei],
IVAC-P^2L: Leveraging Irregular Repetition Priors for Improving Video Action Counting,
MultMed(27), 2025, pp. 8325-8339.
IEEE DOI 2511
Videos, Spatiotemporal phenomena, Visualization, Semantics, Feature extraction, Data mining, Contrastive learning, Training, cycle-interval inconsistency BibRef


Yao, Z.Y.[Zi-Yu], Cheng, X.[Xuxin], Huang, Z.Q.[Zhi-Qi], Li, L.[Lei],
CountLLM: Towards Generalizable Repetitive Action Counting via Large Language Model,
CVPR25(19143-19153)
IEEE DOI 2508
Training, Accuracy, Target recognition, Large language models, Supervised learning, Training data, Benchmark testing, Videos, multimodal large language model BibRef

Zhuo, Y.L.[Yue-Long], Li, W.L.[Wei-Ling], Yang, B.B.[Bei-Bei], Fang, Y.[Yan], Yuan, H.Q.[Hua-Qiang],
Counting Repetitive Actions in Event Stream,
ICIP24(1670-1675)
IEEE DOI Code:
WWW Link. 2411
Visualization, Accuracy, Codes, Heuristic algorithms, Time series analysis, Streaming media, Repetitive Actions, Fast Dynamic Time Warping BibRef

Luo, Y.[Yanan], Yi, J.H.[Jin-Hui], Farha, Y.A.[Yazan Abu], Wolter, M.[Moritz], Gall, J.[Juergen],
Rethinking Temporal Self-Similarity For Repetitive Action Counting,
ICIP24(2187-2193)
IEEE DOI 2411
Accuracy, Feeds, Task analysis, Videos, Repetition Counting, Temporal Self-Similarity BibRef

Li, X.J.[Xin-Jie\], Xu, H.J.[Hui-Juan],
Repetitive Action Counting with Motion Feature Learning,
WACV24(6485-6494)
IEEE DOI 2404
Representation learning, Training, Noise, Dynamics, Collaboration, Task analysis, Algorithms, Video recognition and understanding BibRef

Sinha, S.[Saptarshi], Stergiou, A.[Alexandros], Damen, D.[Dima],
Every Shot Counts: Using Exemplars for Repetition Counting in Videos,
ACCV24(III: 384-402).
Springer DOI 2412
BibRef

Abedi, A.[Ali], Bisht, P.[Paritosh], Chatterjee, R.[Riddhi], Agrawal, R.[Rachit], Sharma, V.[Vyom], Jayagopi, D.B.[Dinesh Babu], Khan, S.S.[Shehroz S.],
Rehabilitation Exercise Repetition Segmentation and Counting Using Skeletal Body Joints,
CRV23(288-295)
IEEE DOI 2406
Analytical models, Privacy, Data privacy, Computational modeling, Neural networks, Patient rehabilitation, exercise segmentation, virtual rehabilitation BibRef

Hu, H.Z.[Hua-Zhang], Dong, S.[Sixun], Zhao, Y.Q.[Yi-Qun], Lian, D.Z.[Dong-Ze], Li, Z.X.[Zheng-Xin], Gao, S.H.[Sheng-Hua],
TransRAC: Encoding Multi-scale Temporal Correlation with Transformers for Repetitive Action Counting,
CVPR22(18991-19000)
IEEE DOI 2210
Degradation, Correlation, Codes, Annotations, Face recognition, Pose estimation, Action and event recognition, Pose estimation and tracking BibRef

Zhang, Y.H.[Yun-Hua], Shao, L.[Ling], Snoek, C.G.M.[Cees G. M.],
Repetitive Activity Counting by Sight and Sound,
CVPR21(14065-14074)
IEEE DOI 2111
Visualization, Analytical models, Codes, Estimation, Cameras BibRef

Zhang, H.D.[Huai-Dong], Xu, X.M.[Xue-Miao], Han, G.Q.[Guo-Qiang], He, S.F.[Sheng-Feng],
Context-Aware and Scale-Insensitive Temporal Repetition Counting,
CVPR20(667-675)
IEEE DOI 2008
Videos, Feature extraction, Benchmark testing, Estimation, Training, Context modeling BibRef

Levy, O.[Ofir], Wolf, L.B.[Lior B.],
Live Repetition Counting,
ICCV15(3020-3028)
IEEE DOI 1602
Count Repetitions of an action. BibRef

Chapter on Motion -- Human Motion, Surveillance, Tracking, Surveillance, Activities continues in
Human ID Using Gait, Recognition of People Through Gait .


Last update:Nov 26, 2025 at 20:24:09