Sato, H., and
Binford, T.O.,
Finding and Recovering SHGC Objects in an Edge Image,
CVGIP(57), No. 3, May 1993, pp. 346-358.
DOI Link
BibRef
9305
Earlier:
BUILDER-I: A System for the Extraction of SHGC Objects in an Edge Image,
DARPA92(779-791).
Describes a method to extract theSHGC from a noisy edge image.
BibRef
Sato, H., and
Binford, T.O.,
On Finding the Ends of SHGCs in an Edge Image,
CVPR92(695-698).
IEEE DOI
BibRef
9200
Earlier:
DARPA92(379-388).
BibRef
Rao, K.G.[Kashipati G.], and
Nevatia, R.,
Describing and Segmenting Scenes from Imperfect and Incomplete Data,
CVGIP(57), No. 1, January 1993, pp. 1-23.
DOI Link
BibRef
9301
USC Computer Vision
PDF File.
BibRef
Earlier:
Shape Descriptions from Imperfect and Incomplete Data,
ICPR90(I: 125-129).
IEEE DOI
BibRef
And:
Descriptions of Complex Objects from Incomplete and Imperfect Data,
DARPA89(399-414).
This extends
See also Computing Volume Descriptions from Sparse 3-D Data. The descriptions
are based on GCs with segmentation into separate parts.
BibRef
Rao, K.G., and
Nevatia, R.,
Computing Volume Descriptions from Sparse 3-D Data,
IJCV(2), No. 1, June 1988, pp. 33-50.
Springer DOI
BibRef
8806
USC Computer Vision
BibRef
And:
ASR-II90Chapter 2.
BibRef
Earlier:
From Sparse 3-D Data Directly to Volumetric Shape Descriptions,
DARPA87(360-369).
BibRef
Generalized Cone Descriptions from Sparse 3-D Data,
CVPR86(256-263).
BibRef
And:
DARPA85(497-505).
Generation of generalized cylinder representations
using sparse data based on symmetries of boundary elements.
BibRef
Rao, K.,
Nevatia, R.,
Medioni, G.,
Issues in Shape Description and an Approach for
Working with Sparse Data,
SRMSF87(168-177).
BibRef
8700
USC Computer Vision
BibRef
Rao, K.,
Shape Description from Sparse and Imperfect Data,
Ph.D.December 1988.
BibRef
8812
USC_IRIS-250.
BibRef
USC Computer Vision
BibRef
Rao, K.,
Medioni, G.,
Liu, H.,
Bekey, G.A.,
Robot Hand-Eye Coordination: Shape Description and Grasping,
CRA88(407-411).
BibRef
8800
USC Computer Vision
BibRef
Shi, Y.F.[Yi-Fei],
Xu, X.[Xin],
Xi, J.H.[Jun-Hua],
Hu, X.C.[Xiao-Chang],
Hu, D.[Dewen],
Xu, K.[Kai],
Learning to Detect 3D Symmetry From Single-View RGB-D Images With
Weak Supervision,
PAMI(45), No. 4, April 2023, pp. 4882-4896.
IEEE DOI
2303
Shape, Annotations, Training, Solid modeling, Transformers,
Neural networks, Symmetry detection, weakly-supervised learning,
deep neural networks
BibRef
Schmidt, T.[Thorsten],
Keuper, M.[Margret],
Pasternak, T.[Taras],
Palme, K.[Klaus],
Ronneberger, O.[Olaf],
Modeling of Sparsely Sampled Tubular Surfaces Using Coupled Curves,
DAGM12(83-92).
Springer DOI
1209
BibRef
Chaperon, T.,
Goulette, F.[François],
Extracting Cylinders in Full 3-D Data Using a Random Sampling Method
and the Gaussian Image,
VMV01(xx-yy).
0209
BibRef
Chapter on 3-D Object Description and Computation Techniques, Surfaces, Deformable, View Generation, Video Conferencing continues in
Generalized Cylinder Generation from Intensity Data .