21.3.1 Sleep Apnea Analysis

Chapter Contents (Back)
Sleep Apnea.
See also Brain, Cortex, Brain Waves, EEG Analysis, Electroencephalogram.

Kermit, M.[Martin], Eide, A.J.[Age J.], Lindblad, T.[Thomas], Waldemark, K.[Karina],
Treatment of obstructive sleep apnea syndrome by monitoring patients airflow signals,
PRL(21), No. 3, March 2000, pp. 277-281. 0003
BibRef

Pavlidis, I., Dowdall, J., Sun, N., Puri, C., Fei, J., Garbey, M.,
Interacting with human physiology,
CVIU(108), No. 1-2, October-November 2007, pp. 150-170.
Elsevier DOI 0710
Human-computer interaction; Thermal imaging; Facial tracking; Blood flow; Cardiac pulse; Breath rate; Stress; Sleep apnea BibRef

Yang, C.[Cheng], Cheung, G.[Gene], Stankovic, V.[Vladimir], Chan, K.[Kevin], Ono, N.[Nobutaka],
Sleep Apnea Detection via Depth Video and Audio Feature Learning,
MultMed(19), No. 4, April 2017, pp. 822-835.
IEEE DOI 1704
Cameras BibRef

Yang, C.[Cheng], Cheung, G.[Gene], Stankovic, V.[Vladimir],
Estimating Heart Rate and Rhythm via 3D Motion Tracking in Depth Video,
MultMed(19), No. 7, July 2017, pp. 1625-1636.
IEEE DOI 1706
Head, Heart rate, Image restoration, Noise reduction, Sensors, Tracking, Biomedical monitoring, image denoising, signal, analysis BibRef

Lashkar, S.[Samaher], Ammar, H.[Heyfa],
A motion-based waveform for the detection of breathing difficulties during sleep,
MVA(30), No. 5, July 2019, pp. 867-874.
Springer DOI 1907
BibRef

Phan, H.[Huy], Chén, O.Y.[Oliver Y.], Tran, M.C.[Minh C.], Koch, P.[Philipp], Mertins, A.[Alfred], de Vos, M.[Maarten],
XSleepNet: Multi-View Sequential Model for Automatic Sleep Staging,
PAMI(44), No. 9, September 2022, pp. 5903-5915.
IEEE DOI 2208
Time-frequency analysis, Sleep apnea, Training data, Training, Databases, Task analysis, Robustness, Automatic sleep staging, end-to-end BibRef

Teng, F.[Fei], Wang, D.[Dian], Yuan, Y.[Yue], Zhang, H.B.[Hai-Bo], Singh, A.K.[Amit Kumar], Lv, Z.H.[Zhi-Han],
Multimedia Monitoring System of Obstructive Sleep Apnea via a Deep Active Learning Model,
MultMedMag(29), No. 3, July 2022, pp. 48-56.
IEEE DOI 2209
Feature extraction, Electrocardiography, Data models, Uncertainty, Training, Monitoring, Labeling BibRef

Chan, H.L.[Hei-Long], Yuen, H.M.[Hoi-Man], Au, C.T.[Chun-Ting], Chan, K.C.C.[Kate Ching-Ching], Li, A.M.[Albert Martin], Lui, L.M.[Lok-Ming],
Classification of Childhood Obstructive Sleep Apnea based on X-ray images analysis by Quasi-conformal Geometry,
PR(152), 2024, pp. 110454.
Elsevier DOI 2405
Obstructive sleep apnea, Quasi-conformal theory, Image analysis, Disease classification, Machine learning BibRef

Niknazar, H.[Hamid], Mednick, S.C.[Sara C.],
A Multi-Level Interpretable Sleep Stage Scoring System by Infusing Experts' Knowledge Into a Deep Network Architecture,
PAMI(46), No. 7, July 2024, pp. 5044-5061.
IEEE DOI 2406
Sleep, Electroencephalography, Feature extraction, Time-frequency analysis, Brain modeling, Deep learning, Kernel, sleep stages BibRef

Qiu, X.[Xihe], Wei, Y.C.[Ying-Chen], Tan, X.Y.[Xiao-Yu], Xu, W.[Weidi], Wang, H.D.[Hao-Dong], Ma, J.[Jingru], Huang, J.J.[Jing-Jing], Fang, Z.J.[Zhi-Jun],
MIMAR-OSA: Enhancing obstructive sleep apnea diagnosis through multimodal data integration and missing modality reconstruction,
PR(169), 2026, pp. 111917.
Elsevier DOI 2509
Multimodal, Graph attention networks, Image matching, DiffWave, Mixture of experts BibRef


Huang, Z.J.[Zheng-Jie], Wang, W.J.[Wen-Jin], de Haan, G.[Gerard],
Nose breathing or mouth breathingƒ A thermography-based new measurement for sleep monitoring,
CVPM21(3877-3883)
IEEE DOI 2109
Temperature measurement, Flowcharts, Atmospheric measurements, Mouth, Nose, Particle measurements, Sleep apnea BibRef

Khincha, R.[Rishab], Krishnan, S.[Soundarya], Parveen, R.[Rizwan], Goveas, N.[Neena],
ECG Signal Analysis on an Embedded Device for Sleep Apnea Detection,
ICISP20(377-384).
Springer DOI 2009
BibRef

Grimm, T., Martinez, M., Benz, A., Stiefelhagen, R.,
Sleep position classification from a depth camera using Bed Aligned Maps,
ICPR16(319-324)
IEEE DOI 1705
Cameras, Gravity, Microprocessors, Monitoring, Sleep apnea, Three-dimensional, displays BibRef

Ammar, H., Lashkar, S.,
Obstructive sleep apnea diagnosis based on a statistical analysis of the optical flow in video recordings,
ISIVC16(18-23)
IEEE DOI 1704
Estimation BibRef

Sharma, S., Bhattacharyya, S., Mukherjee, J., Purkait, P.K., Biswas, A., Deb, A.K.,
Automated detection of newborn sleep apnea using video monitoring system,
ICAPR15(1-6)
IEEE DOI 1511
image motion analysis BibRef

Zhang, Z.[Zhong], Sawamura, I., Toda, H., Akiduki, T., Miyake, T.,
A new approach to diagnose Sleep Apnea Syndrome using a continuous wavelet transform,
ICWAPR15(128-132)
IEEE DOI 1511

See also Achieving complex discrete wavelet transform by lifting scheme using Meyer wavelet. diseases BibRef

Belo, D.[David], Coito, A.L.[Ana Luísa], Paiva, T.[Teresa], Sanches, J.M.[João Miguel],
Topographic EEG Brain Mapping before, during and after Obstructive Sleep Apnea Episodes,
IbPRIA11(564-571).
Springer DOI 1106
BibRef

Xu, W.L.[Wen-Long], Liu, X.F.[Xiao-Fang],
Sleep Apnea Assessment by ECG Pattern,
CISP09(1-4).
IEEE DOI 0910
BibRef

de Chazal, P., Reilly, R.B., Heneghan, C.,
Automatic sleep apnoea detection using measures of amplitude and heart rate variability from the electrocardiogram,
ICPR02(I: 775-778).
IEEE DOI 0211
BibRef

de Chazal, P., Reilly, R.B.,
A Comparison of the Use of Different Wavelet Coefficients for the Classification of the Electrocardiogram,
ICPR00(Vol II: 255-258).
IEEE DOI 0009
BibRef

Chapter on Medical Applications, CAT, MRI, Ultrasound, Heart Models, Brain Models continues in
Cell, DNA, Analysis and Extraction, Microarray .


Last update:Nov 2, 2025 at 14:03:07