Kermit, M.[Martin],
Eide, A.J.[Age J.],
Lindblad, T.[Thomas],
Waldemark, K.[Karina],
Treatment of obstructive sleep apnea syndrome by monitoring patients
airflow signals,
PRL(21), No. 3, March 2000, pp. 277-281.
0003
BibRef
Pavlidis, I.,
Dowdall, J.,
Sun, N.,
Puri, C.,
Fei, J.,
Garbey, M.,
Interacting with human physiology,
CVIU(108), No. 1-2, October-November 2007, pp. 150-170.
Elsevier DOI
0710
Human-computer interaction; Thermal imaging; Facial tracking;
Blood flow; Cardiac pulse; Breath rate; Stress; Sleep apnea
BibRef
Yang, C.[Cheng],
Cheung, G.[Gene],
Stankovic, V.[Vladimir],
Chan, K.[Kevin],
Ono, N.[Nobutaka],
Sleep Apnea Detection via Depth Video and Audio Feature Learning,
MultMed(19), No. 4, April 2017, pp. 822-835.
IEEE DOI
1704
Cameras
BibRef
Yang, C.[Cheng],
Cheung, G.[Gene],
Stankovic, V.[Vladimir],
Estimating Heart Rate and Rhythm via 3D Motion Tracking in Depth
Video,
MultMed(19), No. 7, July 2017, pp. 1625-1636.
IEEE DOI
1706
Head, Heart rate, Image restoration, Noise reduction, Sensors,
Tracking, Biomedical monitoring,
image denoising, signal, analysis
BibRef
Lashkar, S.[Samaher],
Ammar, H.[Heyfa],
A motion-based waveform for the detection of breathing difficulties
during sleep,
MVA(30), No. 5, July 2019, pp. 867-874.
Springer DOI
1907
BibRef
Phan, H.[Huy],
Chén, O.Y.[Oliver Y.],
Tran, M.C.[Minh C.],
Koch, P.[Philipp],
Mertins, A.[Alfred],
de Vos, M.[Maarten],
XSleepNet: Multi-View Sequential Model for Automatic Sleep Staging,
PAMI(44), No. 9, September 2022, pp. 5903-5915.
IEEE DOI
2208
Time-frequency analysis, Sleep apnea, Training data, Training,
Databases, Task analysis, Robustness, Automatic sleep staging,
end-to-end
BibRef
Teng, F.[Fei],
Wang, D.[Dian],
Yuan, Y.[Yue],
Zhang, H.B.[Hai-Bo],
Singh, A.K.[Amit Kumar],
Lv, Z.H.[Zhi-Han],
Multimedia Monitoring System of Obstructive Sleep Apnea via a Deep
Active Learning Model,
MultMedMag(29), No. 3, July 2022, pp. 48-56.
IEEE DOI
2209
Feature extraction, Electrocardiography, Data models, Uncertainty,
Training, Monitoring, Labeling
BibRef
Chan, H.L.[Hei-Long],
Yuen, H.M.[Hoi-Man],
Au, C.T.[Chun-Ting],
Chan, K.C.C.[Kate Ching-Ching],
Li, A.M.[Albert Martin],
Lui, L.M.[Lok-Ming],
Classification of Childhood Obstructive Sleep Apnea based on X-ray
images analysis by Quasi-conformal Geometry,
PR(152), 2024, pp. 110454.
Elsevier DOI
2405
Obstructive sleep apnea, Quasi-conformal theory,
Image analysis, Disease classification, Machine learning
BibRef
Niknazar, H.[Hamid],
Mednick, S.C.[Sara C.],
A Multi-Level Interpretable Sleep Stage Scoring System by Infusing
Experts' Knowledge Into a Deep Network Architecture,
PAMI(46), No. 7, July 2024, pp. 5044-5061.
IEEE DOI
2406
Sleep, Electroencephalography, Feature extraction,
Time-frequency analysis, Brain modeling, Deep learning, Kernel,
sleep stages
BibRef
Qiu, X.[Xihe],
Wei, Y.C.[Ying-Chen],
Tan, X.Y.[Xiao-Yu],
Xu, W.[Weidi],
Wang, H.D.[Hao-Dong],
Ma, J.[Jingru],
Huang, J.J.[Jing-Jing],
Fang, Z.J.[Zhi-Jun],
MIMAR-OSA: Enhancing obstructive sleep apnea diagnosis through
multimodal data integration and missing modality reconstruction,
PR(169), 2026, pp. 111917.
Elsevier DOI
2509
Multimodal, Graph attention networks, Image matching, DiffWave,
Mixture of experts
BibRef
Khincha, R.[Rishab],
Krishnan, S.[Soundarya],
Parveen, R.[Rizwan],
Goveas, N.[Neena],
ECG Signal Analysis on an Embedded Device for Sleep Apnea Detection,
ICISP20(377-384).
Springer DOI
2009
BibRef
Grimm, T.,
Martinez, M.,
Benz, A.,
Stiefelhagen, R.,
Sleep position classification from a depth camera using Bed Aligned
Maps,
ICPR16(319-324)
IEEE DOI
1705
Cameras, Gravity, Microprocessors, Monitoring,
Sleep apnea, Three-dimensional, displays
BibRef
Ammar, H.,
Lashkar, S.,
Obstructive sleep apnea diagnosis based on a statistical analysis of
the optical flow in video recordings,
ISIVC16(18-23)
IEEE DOI
1704
Estimation
BibRef
Sharma, S.,
Bhattacharyya, S.,
Mukherjee, J.,
Purkait, P.K.,
Biswas, A.,
Deb, A.K.,
Automated detection of newborn sleep apnea using video monitoring
system,
ICAPR15(1-6)
IEEE DOI
1511
image motion analysis
BibRef
Zhang, Z.[Zhong],
Sawamura, I.,
Toda, H.,
Akiduki, T.,
Miyake, T.,
A new approach to diagnose Sleep Apnea Syndrome using a continuous
wavelet transform,
ICWAPR15(128-132)
IEEE DOI
1511
See also Achieving complex discrete wavelet transform by lifting scheme using Meyer wavelet. diseases
BibRef
Belo, D.[David],
Coito, A.L.[Ana Luísa],
Paiva, T.[Teresa],
Sanches, J.M.[João Miguel],
Topographic EEG Brain Mapping before, during and after Obstructive
Sleep Apnea Episodes,
IbPRIA11(564-571).
Springer DOI
1106
BibRef
Xu, W.L.[Wen-Long],
Liu, X.F.[Xiao-Fang],
Sleep Apnea Assessment by ECG Pattern,
CISP09(1-4).
IEEE DOI
0910
BibRef
de Chazal, P.,
Reilly, R.B.,
Heneghan, C.,
Automatic sleep apnoea detection using measures of amplitude and heart
rate variability from the electrocardiogram,
ICPR02(I: 775-778).
IEEE DOI
0211
BibRef
de Chazal, P.,
Reilly, R.B.,
A Comparison of the Use of Different Wavelet Coefficients for the
Classification of the Electrocardiogram,
ICPR00(Vol II: 255-258).
IEEE DOI
0009
BibRef
Chapter on Medical Applications, CAT, MRI, Ultrasound, Heart Models, Brain Models continues in
Cell, DNA, Analysis and Extraction, Microarray .