Yu, R.N.[Ruo-Nan],
Liu, S.H.[Song-Hua],
Wang, X.C.[Xin-Chao],
Dataset Distillation: A Comprehensive Review,
PAMI(46), No. 1, January 2024, pp. 150-170.
IEEE DOI
2312
Dataset condensation. Reduse to what matters.
BibRef
Lei, S.[Shiye],
Tao, D.C.[Da-Cheng],
A Comprehensive Survey of Dataset Distillation,
PAMI(46), No. 1, January 2024, pp. 17-32.
IEEE DOI
2312
BibRef
Jin, H.D.[Hyun-Dong],
Kim, E.[Eunwoo],
Dataset condensation with coarse-to-fine regularization,
PRL(188), 2025, pp. 178-184.
Elsevier DOI
2502
Dataset condensation, Representation learning
BibRef
Wu, Y.F.[Yi-Fan],
Du, J.W.[Jia-Wei],
Liu, P.[Ping],
Lin, Y.W.[Yue-Wei],
Xu, W.[Wei],
Cheng, W.Q.[Wen-Qing],
DD-RobustBench: An Adversarial Robustness Benchmark for Dataset
Distillation,
IP(34), 2025, pp. 2052-2066.
IEEE DOI
2504
Robustness, Benchmark testing, Training, Accuracy, Data augmentation,
Pipelines, Computational modeling, Loading, Iterative methods, benchmark
BibRef
Ma, Z.H.[Zhi-Heng],
Cao, A.[Anjia],
Yang, F.[Funing],
Gong, Y.H.[Yi-Hong],
Wei, X.[Xing],
Curriculum Dataset Distillation,
IP(34), 2025, pp. 4176-4187.
IEEE DOI Code:
WWW Link.
2507
Synthetic data, Optimization, Training, Neural networks,
Mathematical models, Scalability, Artificial intelligence, curriculum learning
BibRef
Huang, T.F.[Ting-Feng],
Lin, Y.H.[Yu-Hsun],
Drop2Sparse: Improving Dataset Distillation via Sparse Model,
CirSysVideo(35), No. 8, August 2025, pp. 7568-7578.
IEEE DOI
2508
Training, Synthetic data, Accuracy, Image coding, Computational modeling,
Integrated circuit modeling, Runtime, model sparsification
BibRef
Cui, X.[Xiao],
Qin, Y.[Yulei],
Zhou, W.G.[Wen-Gang],
Li, H.S.[Hong-Sheng],
Li, H.Q.[Hou-Qiang],
OPTICAL: Leveraging Optimal Transport for Contribution Allocation in
Dataset Distillation,
CVPR25(15245-15254)
IEEE DOI
2508
Deep learning, Computational modeling,
Optical variables measurement, Minimization, Geometrical optics,
Synthetic data
BibRef
Cho, S.[Sunwoo],
Jung, Y.[Yejin],
Cho, N.I.[Nam Ik],
Soh, J.W.[Jae Woong],
Dataset Distillation for Super-Resolution Without Class Labels and
Pre-Trained Models,
SPLetters(32), 2025, pp. 3700-3704.
IEEE DOI
2510
Training, Diffusion models, Computational modeling, Superresolution,
Data models, Generative adversarial networks, dataset distillation
BibRef
Zhang, J.X.[Jing-Xuan],
Chen, Z.H.[Zhi-Hua],
Dai, L.[Lei],
Unleashing the Power of Each Distilled Image,
IP(34), 2025, pp. 7050-7064.
IEEE DOI
2511
Training, Synthetic data, Artificial neural networks, Overfitting,
Data models, Computational modeling,
image classification
BibRef
Zhang, H.L.[Hong-Liang],
An, X.Q.[Xiao-Qi],
Lian, J.W.[Jia-Wei],
Luo, L.[Lei],
Yang, J.[Jian],
CoMPR: Efficient point cloud dataset condensation via bidirectional
matching and point recycling,
PR(172), 2026, pp. 112494.
Elsevier DOI
2512
Dataset condensation, Point cloud dataset condensation,
Point recycling, Bidirectional matching,
BibRef
Li, Z.[Zhe],
Cechnicka, S.[Sarah],
Ouyang, C.[Cheng],
Breininger, K.[Katharina],
Schüffler, P.[Peter],
Kainz, B.[Bernhard],
Stochastic latent feature distillation: Enhancing dataset
distillation via structured uncertainty modeling,
JVCIR(113), 2025, pp. 104623.
Elsevier DOI
2512
Dataset distillation, Stochastic method, Image classification
BibRef
Qi, D.[Ding],
Li, J.[Jian],
Gao, J.[Junyao],
Dou, S.G.[Shu-Guang],
Tai, Y.[Ying],
Hu, J.L.[Jian-Long],
Zhao, B.[Bo],
Wang, Y.B.[Ya-Biao],
Wang, C.J.[Cheng-Jie],
Zhao, C.R.[Cai-Rong],
Towards Universal Dataset Distillation via Task-Driven Diffusion,
CVPR25(10557-10566)
IEEE DOI
2508
Training, Image segmentation, Costs, Image synthesis,
Diffusion processes, Diffusion models, Optimization,
Image classification
BibRef
Tran, M.T.[Minh-Tuan],
Le, T.[Trung],
Le, X.M.[Xuan-May],
Do, T.T.[Thanh-Toan],
Phung, D.[Dinh],
Enhancing Dataset Distillation via Non-Critical Region Refinement,
CVPR25(10015-10024)
IEEE DOI Code:
WWW Link.
2508
Training, Codes, Memory management, Complexity theory,
Knowledge transfer, Synthetic data, dataset distillation,
efficient machine learning
BibRef
Shi, Y.[Yudi],
Di, S.Z.[Shang-Zhe],
Chen, Q.[Qirui],
Xie, W.[Weidi],
Enhancing Video-LLM Reasoning via Agent-of-Thoughts Distillation,
CVPR25(8523-8533)
IEEE DOI
2508
Grounding, Computational modeling, Large language models,
Benchmark testing, Cognition,
Videos
BibRef
Chen, Y.[Yanda],
Chen, G.[Gongwei],
Zhang, M.[Miao],
Guan, W.[Weili],
Nie, L.Q.[Li-Qiang],
Curriculum Coarse-to-Fine Selection for High-IPC Dataset Distillation,
CVPR25(20437-20446)
IEEE DOI Code:
WWW Link.
2508
Training, Degradation, Codes, Accuracy, Scalability, Synthetic data,
dataset distillation, curriculum learning, high-ipc
BibRef
Frank, L.[Logan],
Davis, J.[Jim],
What Makes a Good Dataset for Knowledge Distillation,
CVPR25(23755-23764)
IEEE DOI Code:
WWW Link.
2508
Training, Source coding,
Perturbation methods, Computational modeling, Data models,
out-of-distribution knowledge distillation
BibRef
Zhong, W.L.[Wen-Liang],
Tang, H.Y.[Hao-Yu],
Zheng, Q.H.[Qing-Hai],
Xu, M.Z.[Ming-Zhu],
Hu, Y.P.[Yu-Peng],
Guan, W.[Weili],
Towards Stable and Storage-efficient Dataset Distillation: Matching
Convexified Trajectory,
CVPR25(25581-25589)
IEEE DOI
2508
Training, Fitting, Memory management, Training data, Stochastic processes,
Trajectory, Optimization, Synthetic data, deep learning
BibRef
Wang, S.B.[Shao-Bo],
Yang, Y.C.[Yi-Cun],
Liu, Z.Y.[Zhi-Yuan],
Sun, C.H.[Cheng-Hao],
Hu, X.M.[Xu-Ming],
He, C.H.[Cong-Hui],
Zhang, L.F.[Lin-Feng],
Dataset Distillation with Neural Characteristic Function:
A Minmax Perspective,
CVPR25(25570-25580)
IEEE DOI Code:
WWW Link.
2508
Measurement, Image coding, Scalability, Neural networks,
Graphics processing units, Performance gain, characteristic function
BibRef
Zhao, Z.H.[Zheng-Hao],
Wang, H.X.[Hao-Xuan],
Shang, Y.Z.[Yu-Zhang],
Wang, K.[Kai],
Yan, Y.[Yan],
Distilling Long-tailed Datasets,
CVPR25(30609-30618)
IEEE DOI Code:
WWW Link.
2508
Training, Heavily-tailed distribution, Codes, Trajectory,
Reliability, Synthetic data, dataset distillation
BibRef
Zhong, X.H.[Xin-Hao],
Fang, H.[Hao],
Chen, B.[Bin],
Gu, X.[Xulin],
Qiu, M.[Meikang],
Qi, S.H.[Shu-Han],
Xia, S.T.[Shu-Tao],
Hierarchical Features Matter: A Deep Exploration of Progressive
Parameterization Method for Dataset Distillation,
CVPR25(30462-30471)
IEEE DOI Code:
WWW Link.
2508
Measurement, Codes, Accuracy, Transforms, Generative adversarial networks,
Diffusion models, Optimization, hierarchical
BibRef
Wang, K.[Kai],
Li, Z.[Zekai],
Cheng, Z.Q.[Zhi-Qi],
Khaki, S.[Samir],
Sajedi, A.[Ahmad],
Vedantam, R.[Ramakrishna],
Plataniotis, K.N.[Konstantinos N],
Hauptmann, A.[Alexander],
You, Y.[Yang],
Emphasizing Discriminative Features for Dataset Distillation in
Complex Scenarios,
CVPR25(30451-30461)
IEEE DOI
2508
Codes, Filtering, Benchmark testing, efficient deep learning,
dataset distillatiom
BibRef
Malakshan, S.R.[Sahar Rahimi],
Saadabadi, M.S.E.[Mohammad Saeed Ebrahimi],
Dabouei, A.[Ali],
Nasrabadi, N.M.[Nasser M.],
Decomposed Distribution Matching in Dataset Condensation,
WACV25(7112-7122)
IEEE DOI
2505
Training, Degradation, Image resolution, Codes,
Accuracy, Artificial neural networks, intra-class diversity
BibRef
Kang, S.[Seoungyoon],
Lim, Y.[Youngsun],
Shim, H.J.[Hyun-Jung],
Label-Augmented Dataset Distillation,
WACV25(1457-1466)
IEEE DOI
2505
Training, Accuracy, Semantics, Image representation, Robustness,
Image storage, Synthetic data, dataset distillation, synthetic dataset
BibRef
Moon, J.Y.[Jun-Yeong],
Kim, J.U.[Jung Uk],
Park, G.M.[Gyeong-Moon],
Towards Model-agnostic Dataset Condensation by Heterogeneous Models,
ECCV24(XXIX: 234-250).
Springer DOI
2412
BibRef
Zhao, Z.H.[Zheng-Hao],
Shang, Y.Z.[Yu-Zhang],
Wu, J.[Junyi],
Yan, Y.[Yan],
Dataset Quantization with Active Learning Based Adaptive Sampling,
ECCV24(LX: 346-362).
Springer DOI
2412
BibRef
Zheng, H.Z.[Hai-Zhong],
Sun, J.C.[Jia-Chen],
Wu, S.[Shutong],
Kailkhura, B.[Bhavya],
Mao, Z.M.[Z. Morley],
Xiao, C.W.[Chao-Wei],
Prakash, A.[Atul],
Leveraging Hierarchical Feature Sharing for Efficient Dataset
Condensation,
ECCV24(XXIV: 166-182).
Springer DOI
2412
BibRef
Xu, Y.[Yue],
Li, Y.L.[Yong-Lu],
Cui, K.[Kaitong],
Wang, Z.Y.[Zi-Yu],
Lu, C.[Cewu],
Tai, Y.W.[Yu-Wing],
Tang, C.K.[Chi-Keung],
Distill Gold from Massive Ores: Bi-level Data Pruning Towards Efficient
Dataset Distillation,
ECCV24(XX: 240-257).
Springer DOI
2412
BibRef
Yu, R.N.[Ruo-Nan],
Liu, S.[Songhua],
Ye, J.W.[Jing-Wen],
Wang, X.C.[Xin-Chao],
Teddy: Efficient Large-scale Dataset Distillation via
Taylor-approximated Matching,
ECCV24(XLVI: 1-17).
Springer DOI
2412
BibRef
Yang, S.L.[Shao-Lei],
Cheng, S.[Shen],
Hong, M.B.[Ming-Bo],
Fan, H.Q.[Hao-Qiang],
Wei, X.[Xing],
Liu, S.C.[Shuai-Cheng],
Neural Spectral Decomposition for Dataset Distillation,
ECCV24(LII: 275-290).
Springer DOI
2412
BibRef
Son, B.[Byunggwan],
Oh, Y.[Youngmin],
Baek, D.[Donghyeon],
Ham, B.[Bumsub],
FYI: Flip Your Images for Dataset Distillation,
ECCV24(L: 214-230).
Springer DOI
2412
BibRef
Liu, D.[Dai],
Gu, J.D.[Jin-Dong],
Cao, H.[Hu],
Trinitis, C.[Carsten],
Schulz, M.[Martin],
Dataset Distillation by Automatic Training Trajectories,
ECCV24(LXXXVII: 334-351).
Springer DOI
2412
BibRef
Jia, Y.Q.[Yu-Qi],
Vahidian, S.[Saeed],
Sun, J.W.[Jing-Wei],
Zhang, J.Y.[Jian-Yi],
Kungurtsev, V.[Vyacheslav],
Gong, N.Z.Q.[Neil Zhen-Qiang],
Chen, Y.R.[Yi-Ran],
Unlocking the Potential of Federated Learning: The Symphony of Dataset
Distillation via Deep Generative Latents,
ECCV24(LXXVIII: 18-33).
Springer DOI
2412
BibRef
Ye, J.W.[Jing-Wen],
Yu, R.N.[Ruo-Nan],
Liu, S.[Songhua],
Wang, X.C.[Xin-Chao],
Distilled Datamodel with Reverse Gradient Matching,
CVPR24(11954-11963)
IEEE DOI
2410
Training, Computational modeling, Data integrity, Training data,
Reinforcement learning, Data models
BibRef
Deng, W.X.[Wen-Xiao],
Li, W.B.[Wen-Bin],
Ding, T.Y.[Tian-Yu],
Wang, L.[Lei],
Zhang, H.G.[Hong-Guang],
Huang, K.[Kuihua],
Huo, J.[Jing],
Gao, Y.[Yang],
Exploiting Inter-sample and Inter-feature Relations in Dataset
Distillation,
CVPR24(17057-17066)
IEEE DOI Code:
WWW Link.
2410
Training, Deep learning, Face recognition, Focusing,
Computational efficiency, Inter-feature
BibRef
Zhu, D.Y.[Dong-Yao],
Fang, Y.B.[Yan-Bo],
Lei, B.[Bowen],
Xie, Y.Q.[Yi-Qun],
Xu, D.K.[Dong-Kuan],
Zhang, J.[Jie],
Zhang, R.[Ruqi],
Rethinking Data Distillation: Do Not Overlook Calibration,
ICCV23(4912-4922)
IEEE DOI
2401
BibRef
van Noord, N.[Nanne],
Prototype-based Dataset Comparison,
ICCV23(1944-1954)
IEEE DOI Code:
WWW Link.
2401
BibRef
Sajedi, A.[Ahmad],
Khaki, S.[Samir],
Amjadian, E.[Ehsan],
Liu, L.Z.[Lucy Z.],
Lawryshyn, Y.A.[Yuri A.],
Plataniotis, K.N.[Konstantinos N.],
DataDAM: Efficient Dataset Distillation with Attention Matching,
ICCV23(17051-17061)
IEEE DOI
2401
BibRef
Zhou, D.[Daquan],
Wang, K.[Kai],
Gu, J.Y.[Jian-Yang],
Peng, X.Y.[Xiang-Yu],
Lian, D.Z.[Dong-Ze],
Zhang, Y.F.[Yi-Fan],
You, Y.[Yang],
Feng, J.S.[Jia-Shi],
Dataset Quantization,
ICCV23(17159-17170)
IEEE DOI
2401
BibRef
Liu, Y.Q.[Yan-Qing],
Gu, J.Y.[Jian-Yang],
Wang, K.[Kai],
Zhu, Z.[Zheng],
Jiang, W.[Wei],
You, Y.[Yang],
DREAM: Efficient Dataset Distillation by Representative Matching,
ICCV23(17268-17278)
IEEE DOI
2401
BibRef
Liu, S.[Songhua],
Wang, X.C.[Xin-Chao],
Few-Shot Dataset Distillation via Translative Pre-Training,
ICCV23(18608-18618)
IEEE DOI
2401
BibRef
Mazumder, A.[Alokendu],
Baruah, T.[Tirthajit],
Singh, A.K.[Akash Kumar],
Murthy, P.K.[Pagadala Krishna],
Pattanaik, V.[Vishwajeet],
Rathore, P.[Punit],
DeepVAT: A Self-Supervised Technique for Cluster Assessment in Image
Datasets,
VIPriors23(187-195)
IEEE DOI
2401
BibRef
Zhang, L.[Lei],
Zhang, J.[Jie],
Lei, B.[Bowen],
Mukherjee, S.[Subhabrata],
Pan, X.[Xiang],
Zhao, B.[Bo],
Ding, C.[Caiwen],
Li, Y.[Yao],
Xu, D.[Dongkuan],
Accelerating Dataset Distillation via Model Augmentation,
CVPR23(11950-11959)
IEEE DOI
2309
smaller but efficient synthetic training datasets from large ones
BibRef
Cazenavette, G.[George],
Wang, T.Z.[Tong-Zhou],
Torralba, A.[Antonio],
Efros, A.A.[Alexei A.],
Zhu, J.Y.[Jun-Yan],
Generalizing Dataset Distillation via Deep Generative Prior,
CVPR23(3739-3748)
IEEE DOI
2309
BibRef
Wang, Z.J.[Zi-Jia],
Yang, W.B.[Wen-Bin],
Liu, Z.S.[Zhi-Song],
Chen, Q.[Qiang],
Ni, J.C.[Jia-Cheng],
Jia, Z.[Zhen],
Gift from Nature:
Potential Energy Minimization for Explainable Dataset Distillation,
MLCSA22(240-255).
Springer DOI
2307
BibRef
Cazenavette, G.[George],
Wang, T.Z.[Tong-Zhou],
Torralba, A.[Antonio],
Efros, A.A.[Alexei A.],
Zhu, J.Y.[Jun-Yan],
Dataset Distillation by Matching Training Trajectories,
CVPR22(10708-10717)
IEEE DOI
2210
BibRef
Earlier:
VDU22(4749-4758)
IEEE DOI
2210
Training, Visualization, Trajectory, Task analysis,
Unsupervised learning, Pattern matching,
Self- semi- meta- unsupervised learning
Training, Visualization, Trajectory, Task analysis, Pattern matching
BibRef
Chapter on Matching and Recognition Using Volumes, High Level Vision Techniques, Invariants continues in
Fine Tuning, Fine-Tuning, Pre-Training, Zero-Shot, One-Shot .