Huo, H.Y.[Hong-Yuan],
Jiang, X.G.[Xiao-Guang],
Song, X.F.[Xian-Feng],
Li, Z.L.[Zhao-Liang],
Ni, Z.Y.[Zhuo-Ya],
Gao, C.X.[Cai-Xia],
Detection of Coal Fire Dynamics and Propagation Direction from
Multi-Temporal Nighttime Landsat SWIR and TIR Data: A Case Study on
the Rujigou Coalfield, Northwest (NW) China,
RS(6), No. 2, 2014, pp. 1234-1259.
DOI Link
1403
BibRef
Huo, H.Y.[Hong-Yuan],
Ni, Z.Y.[Zhuo-Ya],
Gao, C.X.[Cai-Xia],
Zhao, E.[Enyu],
Zhang, Y.Z.[Yu-Ze],
Lian, Y.[Yi],
Zhang, H.L.[Hui-Li],
Zhang, S.Y.[Shi-Yue],
Jiang, X.G.[Xiao-Guang],
Song, X.F.[Xian-Feng],
Zhou, P.[Ping],
Cui, T.J.[Tie-Jun],
A Study of Coal Fire Propagation with Remotely Sensed Thermal
Infrared Data,
RS(7), No. 3, 2015, pp. 3088-3113.
DOI Link
1504
BibRef
Du, X.M.[Xiao-Min],
Bernardes, S.[Sergio],
Cao, D.Y.[Dai-Yong],
Jordan, T.R.[Thomas R.],
Yan, Z.[Zhen],
Yang, G.[Guang],
Li, Z.P.[Zhi-Peng],
Self-Adaptive Gradient-Based Thresholding Method for Coal Fire
Detection Based on ASTER Data: Part 2, Validation and Sensitivity
Analysis,
RS(7), No. 3, 2015, pp. 2602-2626.
DOI Link
1504
BibRef
Du, X.M.[Xiao-Min],
Cao, D.Y.[Dai-Yong],
Mishra, D.[Deepak],
Bernardes, S.[Sergio],
Jordan, T.R.[Thomas R.],
Madden, M.[Marguerite],
Self-Adaptive Gradient-Based Thresholding Method for Coal Fire
Detection Using ASTER Thermal Infrared Data, Part I: Methodology and
Decadal Change Detection,
RS(7), No. 6, 2015, pp. 6576.
DOI Link
1507
BibRef
Gao, Y.Y.[Yan-Yan],
Hao, M.[Ming],
Wang, Y.J.[Yun-Jia],
Dang, L.[Libo],
Guo, Y.C.[Yue-Cheng],
Multi-Scale Coal Fire Detection Based on an Improved Active Contour
Model from Landsat-8 Satellite and UAV Images,
IJGI(10), No. 7, 2021, pp. xx-yy.
DOI Link
2108
BibRef
Liu, J.L.[Jing-Long],
Wang, Y.J.[Yun-Jia],
Yan, S.Y.[Shi-Yong],
Zhao, F.[Feng],
Li, Y.[Yi],
Dang, L.[Libo],
Liu, X.X.[Xi-Xi],
Shao, Y.Q.[Ya-Qin],
Peng, B.[Bin],
Underground Coal Fire Detection and Monitoring Based on Landsat-8 and
Sentinel-1 Data Sets in Miquan Fire Area, XinJiang,
RS(13), No. 6, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Yu, B.[Bing],
She, J.[Jie],
Liu, G.X.[Guo-Xiang],
Ma, D.Y.[De-Ying],
Zhang, R.[Rui],
Zhou, Z.W.[Zhi-Wei],
Zhang, B.[Bo],
Coal fire identification and state assessment by integrating
multitemporal thermal infrared and InSAR remote sensing data: A case
study of Midong District, Urumqi, China,
PandRS(190), 2022, pp. 144-164.
Elsevier DOI
2208
Coal fire area identification,
Thermal infrared remote sensing, Multitemporal InSAR,
Coal fire area status quantitative evaluation
BibRef
Zhang, Y.X.[Yu-Xuan],
Wang, Y.J.[Yun-Jia],
Huo, W.Q.[Wen-Qi],
Zhao, F.[Feng],
Hu, Z.B.[Zhong-Bo],
Wang, T.[Teng],
Song, R.[Rui],
Liu, J.L.[Jing-Long],
Zhang, L.X.[Lei-Xin],
Fernández, J.[José],
Escayo, J.[Joaquin],
Cao, F.[Fei],
Yan, J.[Jun],
Ground Deformation Monitoring over Xinjiang Coal Fire Area by an
Adaptive ERA5-Corrected Stacking-InSAR Method,
RS(15), No. 5, 2023, pp. xx-yy.
DOI Link
2303
BibRef
Tian, Z.[Zeming],
Fan, H.D.[Hong-Dong],
Cao, F.[Fei],
He, L.[Long],
Monitoring Surface Subsidence Using Distributed Scatterer InSAR with
an Improved Statistically Homogeneous Pixel Selection Method in
Coalfield Fire Zones,
RS(15), No. 14, 2023, pp. 3574.
DOI Link
2307
BibRef
Meng, Q.F.[Qing-Fa],
Ma, G.Q.[Guo-Qing],
Li, L.[Lili],
Li, J.Y.[Jing-Yu],
An Optimized Detection Approach to Subsurface Coalfield Spontaneous
Combustion Areas Using Airborne Magnetic Data,
RS(17), No. 7, 2025, pp. 1185.
DOI Link
2504
BibRef
Wang, Y.[Yao],
Zhang, M.S.[Mao-Sheng],
Yang, C.B.[Chuan-Bo],
Luo, D.[Da],
Dong, Y.[Ying],
Liu, H.[Hao],
Zhang, X.[Xu],
Yan, Y.T.[Yu-Teng],
Feng, L.[Li],
Topography-Land Surface Temperature Coupling: A Promising Approach
for the Early Identification of Coal Seam Fire Zones,
IJGI(14), No. 5, 2025, pp. 206.
DOI Link
2505
BibRef
Xu, D.[Duo],
Zhao, Y.X.[Yi-Xin],
Zhang, K.N.[Kang-Ning],
Ling, C.W.[Chun-Wei],
Li, P.[Peng],
Quantifying Thermal Spatiotemporal Signatures and Identifying Hidden
Mining-Induced Fissures with Various Burial Depths via UAV Infrared
Thermometry,
RS(17), No. 12, 2025, pp. 1992.
DOI Link
2506
BibRef
Chapter on Computational Vision, Regularization, Connectionist, Morphology, Scale-Space, Perceptual Grouping, Wavelets, Color, Sensors, Optical, Laser, Radar continues in
Surface Deformation, Subsidance From SAR Applied in Urban, City Areas .