Luo, Q.S.[Qing-Shan],
Kong, X.D.[Xiao-Dong],
Zeng, G.H.[Gui-Hua],
Fan, J.P.[Jian-Ping],
Human action detection via boosted local motion histograms,
MVA(21), No. 3, April 2010, pp. xx-yy.
Springer DOI
1003
BibRef
Chan-Hon-Tong, A.[Adrien],
Achard, C.[Catherine],
Lucat, L.[Laurent],
Simultaneous segmentation and classification of human actions in
video streams using deeply optimized Hough transform,
PR(47), No. 12, 2014, pp. 3807-3818.
Elsevier DOI
1410
Human actions
BibRef
Vaquette, G.[Geoffrey],
Achard, C.[Catherine],
Lucat, L.[Laurent],
Robust information fusion in the DOHT paradigm for real-time action
detection,
RealTimeIP(16), No. 5, October 2019, pp. 1511-1524.
WWW Link.
1911
Deeply Optimized Hough Transform: DOHT.
BibRef
Hara, K.[Kensho],
Hirayama, T.[Takatsugu],
Mase, K.[Kenji],
Vote Distribution Model for Hough-Based Action Detection,
IEICE(E99-D), No. 11, November 2016, pp. 2796-2808.
WWW Link.
1611
BibRef
Zhang, B.,
Yang, Y.,
Chen, C.,
Yang, L.,
Han, J.,
Shao, L.,
Action Recognition Using 3D Histograms of Texture and A Multi-Class
Boosting Classifier,
IP(26), No. 10, October 2017, pp. 4648-4660.
IEEE DOI
1708
feature extraction, image motion analysis,
3D Histograms, MBC, boosting frameworks,
discriminant feature extraction, human action recognition,
orthogonal Cartesian planes, projecting depth frames,
Boosting,
Hidden Markov models, Histograms, Robustness,
Action recognition,
depth image, multi-class classification,
texture feature
BibRef
Chen, Q.Q.[Quan-Qi],
Zhang, Y.J.[Yu-Jin],
Sequential Segment Networks for Action Recognition,
SPLetters(24), No. 5, May 2017, pp. 712-716.
IEEE DOI
1704
Histograms
BibRef
Du, W.B.[Wen-Bin],
Wang, Y.[Yali],
Qiao, Y.[Yu],
Recurrent Spatial-Temporal Attention Network for Action Recognition
in Videos,
IP(27), No. 3, March 2018, pp. 1347-1360.
IEEE DOI
1801
BibRef
And:
RPAN: An End-to-End Recurrent Pose-Attention Network for Action
Recognition in Videos,
ICCV17(3745-3754)
IEEE DOI
1802
Feature extraction, Image recognition,
Optical imaging, Recurrent neural networks,
spatial-temporal attention.
image motion analysis, pose estimation,
video signal processing, RNNs, RPAN,
BibRef
Wang, J.[Jiaze],
Peng, X.J.[Xiao-Jiang],
Qiao, Y.[Yu],
Cascade multi-head attention networks for action recognition,
CVIU(192), 2020, pp. 102898.
Elsevier DOI
2002
Action recognition, Cascade multi-head attention network,
Feature aggregation, Visual analysis
BibRef
Luo, C.,
Yuille, A.L.[Alan L.],
Grouped Spatial-Temporal Aggregation for Efficient Action Recognition,
ICCV19(5511-5520)
IEEE DOI
2004
feature extraction, image motion analysis,
image representation, image sequences, inference mechanisms,
Computational efficiency
BibRef
Hara, K.[Kensho],
Hirayama, T.[Takatsugu],
Mase, K.[Kenji],
Trend-sensitive hough forests for action detection,
ICIP14(1475-1479)
IEEE DOI
1502
Accuracy
BibRef
Kobayashi, T.[Takumi],
Flip-Invariant Motion Representation,
ICCV17(5629-5638)
IEEE DOI
1802
Cameras, Feature extraction, Histograms, Image color analysis,
Image recognition, Robustness, Video sequences
BibRef
Monteleone, V.[Vito],
lo Presti, L.[Liliana],
La Cascia, M.[Marco],
HoP: Histogram of Patterns for Human Action Representation,
CIAP17(I:457-468).
Springer DOI
1711
BibRef
Abdulmunem, A.,
Lai, Y.K.,
Sun, X.,
3D GLOH features for human action recognition,
ICPR16(805-810)
IEEE DOI
1705
Feature extraction, Histograms,
Image motion analysis, Videos, Visualization
BibRef
Hilsenbeck, B.,
Münch, D.,
Kieritz, H.[Hilke],
Hübner, W.[Wolfgang],
Arens, M.[Michael],
Hierarchical Hough forests for view-independent action recognition,
ICPR16(1911-1916)
IEEE DOI
1705
Cameras, Detectors, Face recognition, Image sequences,
Training, Vegetation
BibRef
García-Hernando, G.B.[Gloria Bueno],
Chang, H.J.,
Serrano, I.,
Deniz Suarez, O.[Oscar],
Kim, T.K.,
Transition Hough forest for trajectory-based action recognition,
WACV16(1-8)
IEEE DOI
1606
Cameras
BibRef
Tian, Q.[Qing],
Arbel, T.[Tal],
Clark, J.J.[James J.],
Shannon information based adaptive sampling for action recognition,
ICPR16(967-972)
IEEE DOI
1705
Brain modeling, Detectors, Feature extraction, Histograms,
Pattern recognition, Trajectory, Visualization
BibRef
Miao, J.[Jie],
Xu, X.M.[Xiang-Min],
Mathew, R.[Reji],
Huang, H.Y.[Hao-Yu],
Residue boundary histograms for action recognition in the compressed
domain,
ICIP15(2825-2829)
IEEE DOI
1512
Compressed domain; action recognition; feature extraction
BibRef
Ahsan, S.M.M.[S.M. Masudul],
Tan, J.K.[Joo Kooi],
Kim, H.[Hyoungseop],
Ishikawa, S.[Seiji],
Histogram of DMHI and LBP images to represent human actions,
ICIP14(1440-1444)
IEEE DOI
1502
DMHI; Histogram; LBP; MHI; SVM
BibRef
Ciptadi, A.[Arridhana],
Goodwin, M.S.[Matthew S.],
Rehg, J.M.[James M.],
Movement Pattern Histogram for Action Recognition and Retrieval,
ECCV14(II: 695-710).
Springer DOI
1408
BibRef
Chua, T.W.[Teck Wee],
Leman, K.[Karianto],
A Novel Human Action Representation via Convolution of Shape-Motion
Histograms,
MMMod14(I: 98-108).
Springer DOI
1405
BibRef
Ren, H.M.[Hua-Min],
Moeslund, T.B.[Thomas B.],
Action recognition using salient neighboring histograms,
ICIP13(2807-2811)
IEEE DOI
1402
Salient visual words; action recognition; neighboring histograms
BibRef
Hara, K.,
Hirayama, T.,
Mase, K.,
Simultaneous Action Recognition and Localization Based on Multi-view
Hough Voting,
ACPR13(616-620)
IEEE DOI
1408
Hough transforms
BibRef
Chan-Hon-Tong, A.[Adrien],
Achard, C.[Catherine],
Deeply Optimized Hough Transform: Application to Action Segmentation,
CIAP13(I:51-60).
Springer DOI
1311
BibRef
Fuad, Z.[Zain],
Unel, M.[Mustafa],
Human Action Recognition Using Fusion of Depth and Inertial Sensors,
ICIAR18(373-380).
Springer DOI
1807
BibRef
Ustundag, B.C.[Baris Can],
Unel, M.[Mustafa],
Human Action Recognition Using Histograms of Oriented Optical Flows
from Depth,
ISVC14(I: 629-638).
Springer DOI
1501
BibRef
Sultani, W.[Waqas],
Saleemi, I.[Imran],
Human Action Recognition across Datasets by Foreground-Weighted
Histogram Decomposition,
CVPR14(764-771)
IEEE DOI
1409
action recognition
BibRef
Tabia, H.[Hedi],
Gouiffes, M.[Michele],
Lacassagne, L.[Lionel],
Motion histogram quantification for human action recognition,
ICPR12(2404-2407).
WWW Link.
1302
BibRef
Perez, E.A.[Eder A.],
Mota, V.F.[Virginia F.],
Maciel, L.M.[Luiz Maurilio],
Sad, D.[Dhiego],
Vieira, M.B.[Marcelo B.],
Combining gradient histograms using orientation tensors for human
action recognition,
ICPR12(3460-3463).
WWW Link.
1302
BibRef
Lo, Y.C.[Yung-Chi],
Lee, P.Y.[Po-Yen],
Cheng, S.C.[Shyi-Chyi],
Space-time template matching for human action detection using
volume-based Generalized Hough transform,
ICIP11(2097-2100).
IEEE DOI
1201
BibRef
Hsu, F.S.[Fu-Song],
Lin, C.H.[Cheng-Hsien],
Lin, W.Y.[Wei-Yang],
Recognizing human actions using curvature estimation and NWFE-based
histogram vectors,
VCIP11(1-4).
IEEE DOI
1201
BibRef
Ziaeefard, M.[Maryam],
Ebrahimnezhad, H.[Hossein],
Hierarchical Human Action Recognition by Normalized-Polar Histogram,
ICPR10(3720-3723).
IEEE DOI
1008
BibRef
Lai, K.T.[Kuan-Ting],
Chen, M.S.[Ming-Syan],
Hsieh, C.H.[Chaur-Heh],
Lai, M.F.[Mao-Fu],
Orientation histogram of SIFT displacement for recognizing actions in
broadcast videos,
EUVIP11(286-291).
IEEE DOI
1110
BibRef
Earlier: A1, A3, A4, A2:
Human Action Recognition Using Key Points Displacement,
ICISP10(439-447).
Springer DOI
1006
BibRef
Vezzani, R.[Roberto],
Baltieri, D.[Davide],
Cucchiara, R.[Rita],
HMM Based Action Recognition with Projection Histogram Features,
ICPR-Contests10(286-293).
Springer DOI
1008
BibRef
Chapter on Motion -- Human Motion, Surveillance, Tracking, Surveillance, Activities continues in
Motion Flow, Motion Vectors for Human Action Recognition and Detection .