Everitt, R.G.,
Glendinning, R.H.,
A statistical approach to the problem of restoring damaged and
contaminated images,
PR(42), No. 1, January 2009, pp. 115-125.
Elsevier DOI
0809
Bayesian statistics; Damaged images; EEG artefacts;
Illumination variations; Photographs; Semi-parametric model
BibRef
Sardouie, S.H.[Sepideh Hajipour],
Albera, L.,
Shamsollahi, M.B.[Mohammad B.],
Merlet, I.,
An Efficient Jacobi-Like Deflationary ICA Algorithm:
Application to EEG Denoising,
SPLetters(22), No. 8, August 2015, pp. 1198-1202.
IEEE DOI
1502
electroencephalography
BibRef
Sun, L.,
Feng, Z.R.,
Classification of imagery motor EEG data with wavelet denoising and
features selection,
ICWAPR16(184-188)
IEEE DOI
1611
Algorithm design and analysis
BibRef
Saleh, M.,
Karfoul, A.,
Kachenoura, A.,
Merlet, I.,
Albera, L.,
Efficient Stepsize Selection Strategy for Givens Parametrized ICA
Applied to EEG Denoising,
SPLetters(24), No. 6, June 2017, pp. 882-886.
IEEE DOI
1705
Complexity theory, Convergence, Electroencephalography,
Mathematical model, Noise reduction,
Signal processing algorithms, Taylor series, BSS,
deflation optimization procedure, electroencephalography (EEG) denoising,independent, component, analysis, (ICA)
BibRef
Chen, B.D.[Ba-Dong],
Ma, R.J.[Rong-Jin],
Yu, S.Y.[Si-Yu],
Du, S.Y.[Shao-Yi],
Qin, J.[Jing],
Granger Causality Analysis Based on Quantized Minimum Error Entropy
Criterion,
SPLetters(26), No. 2, February 2019, pp. 347-351.
IEEE DOI
1902
causality, computational complexity, electroencephalography,
entropy, Gaussian noise, mean square error methods,
linear regression model
BibRef
Chen, B.D.[Ba-Dong],
Li, Y.H.[Yuan-Hao],
Dong, J.Y.[Ji-Yao],
Lu, N.[Na],
Qin, J.[Jing],
Common Spatial Patterns Based on the Quantized Minimum Error Entropy
Criterion,
SMCS(50), No. 11, November 2020, pp. 4557-4568.
IEEE DOI
1806
Entropy, Electroencephalography, Robustness, Feature extraction,
Quantization (signal), Dispersion, Complexity theory,
robustness
BibRef
Saini, M.,
Satija, U.,
Upadhayay, M.D.,
Wavelet Based Waveform Distortion Measures for Assessment of Denoised
EEG Quality With Reference to Noise-Free EEG Signal,
SPLetters(27), 2020, pp. 1260-1264.
IEEE DOI
2008
Electroencephalogram (EEG), distortion measures,
wavelet subband energy, wavelet entropy
BibRef
Zhu, J.[Jun],
Feng, L.[Lei],
Mo, X.H.[Xiao-Hui],
Robust Multichannel EEG Signal Reconstruction Method,
PRL(151), 2021, pp. 209-214.
Elsevier DOI
2110
compressive sensing, half-quadratic theory, impulsive noise,
low-rank prior, alternative direction method of multipliers
BibRef
Delvigne, V.[Victor],
Wannous, H.[Hazem],
Dutoit, T.[Thierry],
Ris, L.[Laurence],
Vandeborre, J.P.[Jean-Philippe],
PhyDAA: Physiological Dataset Assessing Attention,
CirSysVideo(32), No. 5, May 2022, pp. 2612-2623.
IEEE DOI
2205
Electroencephalography, Task analysis, Physiology, Estimation,
Virtual reality, Noise measurement, Training,
attention estimation
BibRef
Cai, C.[Chang],
Kang, H.[Huicong],
Hashemi, A.[Ali],
Chen, D.[Dan],
Diwakar, M.[Mithun],
Haufe, S.[Stefan],
Sekihara, K.[Kensuke],
Wu, W.[Wei],
Nagarajan, S.S.[Srikantan S.],
Bayesian Algorithms for Joint Estimation of Brain Activity and Noise
in Electromagnetic Imaging,
MedImg(42), No. 3, March 2023, pp. 762-773.
IEEE DOI
2303
Sensors, Brain modeling, Estimation, Interference, Bayes methods,
Neuroimaging, Image sensors, Electromagnetic brain imaging, MEG/EEG
BibRef
Chapter on Medical Applications, CAT, MRI, Ultrasound, Heart Models, Brain Models continues in
Brain-Computer Interface, Brain-Machine Interface, Biomimetic .