4.11.2.9.1 Underwater Object Detection

Chapter Contents (Back)
Color Correction. Underwater. Object Detection.
See also Feature and Object Detection Systems.

Zotta, L., Matteoli, S., Diani, M., Corsini, G.,
AFRODiTE: A FluoRescence Lidar Simulator for Underwater Object DeTEction Applications,
GeoRS(53), No. 6, June 2015, pp. 3022-3041.
IEEE DOI 1503
oceanographic regions BibRef

Cejka, J.[Jan], Bruno, F.[Fabio], Skarlatos, D.[Dimitrios], Liarokapis, F.[Fotis],
Detecting Square Markers in Underwater Environments,
RS(11), No. 4, 2019, pp. xx-yy.
DOI Link 1903
BibRef

Kannan, S.[Srividhya],
Intelligent object recognition in underwater images using evolutionary-based Gaussian mixture model and shape matching,
SIViP(14), No. 5, July 2020, pp. 877-885.
Springer DOI 2006
BibRef

Szymak, P.[Piotr], Piskur, P.[Pawel], Naus, K.[Krzysztof],
The Effectiveness of Using a Pretrained Deep Learning Neural Networks for Object Classification in Underwater Video,
RS(12), No. 18, 2020, pp. xx-yy.
DOI Link 2009
BibRef

Liu, R., Fan, X., Zhu, M., Hou, M., Luo, Z.,
Real-World Underwater Enhancement: Challenges, Benchmarks, and Solutions Under Natural Light,
CirSysVideo(30), No. 12, December 2020, pp. 4861-4875.
IEEE DOI 2012
Image color analysis, Image enhancement, Task analysis, Histograms, Benchmark testing, Imaging, Degradation, object detection BibRef

Chen, L.[Long], Jiang, Z.[Zheheng], Tong, L.[Lei], Liu, Z.H.[Zhi-Hua], Zhao, A.[Aite], Zhang, Q.[Qianni], Dong, J.Y.[Jun-Yu], Zhou, H.Y.[Hui-Yu],
Perceptual Underwater Image Enhancement With Deep Learning and Physical Priors,
CirSysVideo(31), No. 8, August 2021, pp. 3078-3092.
IEEE DOI 2108
Task analysis, Image enhancement, Image color analysis, Absorption, Image synthesis, Deep learning, Object detection, perceptual loss BibRef

Zhang, M.H.[Ming-Hua], Xu, S.[Shubo], Song, W.[Wei], He, Q.[Qi], Wei, Q.[Quanmiao],
Lightweight Underwater Object Detection Based on YOLO v4 and Multi-Scale Attentional Feature Fusion,
RS(13), No. 22, 2021, pp. xx-yy.
DOI Link 2112
BibRef

Liu, R.S.[Ri-Sheng], Jiang, Z.Y.[Zhi-Ying], Yang, S.Z.[Shu-Zhou], Fan, X.[Xin],
Twin Adversarial Contrastive Learning for Underwater Image Enhancement and Beyond,
IP(31), 2022, pp. 4922-4936.
IEEE DOI 2208
Task analysis, Image enhancement, Detectors, Image restoration, Object detection, Image color analysis, Visualization, generative adversarial learning BibRef

Chen, L.[Long], Zhou, F.X.[Fei-Xiang], Wang, S.K.[Sheng-Ke], Dong, J.Y.[Jun-Yu], Li, N.[Ning], Ma, H.P.[Hai-Ping], Wang, X.[Xin], Zhou, H.Y.[Hui-Yu],
SWIPENET: Object detection in noisy underwater scenes,
PR(132), 2022, pp. 108926.
Elsevier DOI 2209
Underwater object detection, Curriculum Multi-Class Adaboost, Sample-weighted detection loss, Noisy data BibRef

Jia, J.Q.[Jia-Qi], Fu, M.[Min], Liu, X.F.[Xue-Feng], Zheng, B.[Bing],
Underwater Object Detection Based on Improved EfficientDet,
RS(14), No. 18, 2022, pp. xx-yy.
DOI Link 2209
BibRef

Fu, C.P.[Chen-Ping], Fan, X.[Xin], Xiao, J.[Jiewen], Yuan, W.Q.[Wan-Qi], Liu, R.S.[Ri-Sheng], Luo, Z.X.[Zhong-Xuan],
Learning Heavily-Degraded Prior for Underwater Object Detection,
CirSysVideo(33), No. 11, November 2023, pp. 6887-6896.
IEEE DOI Code:
WWW Link. 2311
BibRef

Yuan, J.J.[Jiao-Jiao], Hu, Y.L.[Yong-Li], Sun, Y.F.[Yan-Feng], Yin, B.C.[Bao-Cai],
A multi-scale feature representation and interaction network for underwater object detection,
IET-CV(17), No. 3, 2023, pp. 265-281.
DOI Link 2305
convolutional neural nets, object detection BibRef

Hua, X.[Xia], Cui, X.P.[Xiao-Peng], Xu, X.H.[Xing-Hua], Qiu, S.H.[Shao-Hua], Liang, Y.J.[Ying-Jie], Bao, X.Q.[Xian-Qiang], Li, Z.[Zhong],
Underwater object detection algorithm based on feature enhancement and progressive dynamic aggregation strategy,
PR(139), 2023, pp. 109511.
Elsevier DOI 2304
Underwater image, Dynamic feature fusion, Small object detection, Rapid spatial pyramid pooling, Feature enhancement BibRef

Chen, G.Q.[Gang-Qi], Mao, Z.Y.[Zhao-Yong], Wang, K.[Kai], Shen, J.[Junge],
HTDet: A Hybrid Transformer-Based Approach for Underwater Small Object Detection,
RS(15), No. 4, 2023, pp. xx-yy.
DOI Link 2303
BibRef

Qin, K.S.[Ken Sinkou], Liu, D.[Di], Wang, F.[Fei], Zhou, J.C.[Jing-Chun], Yang, J.X.[Jia-Xuan], Zhang, W.S.[Wei-Shi],
Improved YOLOv7 model for underwater sonar image object detection,
JVCIR(100), 2024, pp. 104124.
Elsevier DOI 2405
Underwater object detection, Sonar image, Criss-Cross Attention, Model pruning, YOLOv7 model BibRef

Wei, D.B.[De-Bin], Xie, H.J.[Hong-Ji], Zhang, Z.X.[Zeng-Xi], Yan, T.T.[Tian-Tian],
Learning a Holistic-Specific color transformer with Couple Contrastive constraints for underwater image enhancement and beyond,
JVCIR(98), 2024, pp. 104059.
Elsevier DOI 2402
Underwater image enhancement, Underwater object detection, Contrastive learning BibRef

Dai, L.H.[Lin-Hui], Liu, H.[Hong], Song, P.[Pinhao], Liu, M.Y.[Meng-Yuan],
A gated cross-domain collaborative network for underwater object detection,
PR(149), 2024, pp. 110222.
Elsevier DOI 2403
Underwater object detection, Underwater image enhancement, Cross-domain BibRef

Liu, Z.Y.[Zhuo-Yan], Wang, B.[Bo], Li, Y.[Ye], He, J.X.[Jia-Xian], Li, Y.F.[Yun-Feng],
UnitModule: A lightweight joint image enhancement module for underwater object detection,
PR(151), 2024, pp. 110435.
Elsevier DOI Code:
WWW Link. 2404
Underwater object detection, Image enhancement, Unsupervised learning, Joint training BibRef

Wu, J.J.[Jun-Jun], Chen, J.P.[Jin-Peng], Lu, Q.H.[Qing-Hua], Li, J.X.[Jia-Xi], Qin, N.[Ningwei], Chen, K.X.[Kai-Xuan], Liu, X.L.[Xi-Lin],
U-ATSS: A lightweight and accurate one-stage underwater object detection network,
SP:IC(126), 2024, pp. 117137.
Elsevier DOI 2406
Marine environment, Underwater robot, Object detection, One-stage, Lightweight network BibRef

Vlachos, A.[Apostolos], Bargiota, E.[Eleftheria], Krinidis, S.[Stelios], Papadimitriou, K.[Kimon], Manglis, A.[Angelos], Fourkiotou, A.[Anastasia], Tzovaras, D.[Dimitrios],
iblueCulture: Data Streaming and Object Detection in a Real-Time Video Streaming Underwater System,
RS(16), No. 13, 2024, pp. 2254.
DOI Link 2407
BibRef

Chen, L.[Long], Li, T.[Tengyue], Zhou, A.[Andy], Wang, S.K.[Sheng-Ke], Dong, J.Y.[Jun-Yu], Zhou, H.Y.[Hui-Yu],
Underwater object detection in noisy imbalanced datasets,
PR(155), 2024, pp. 110649.
Elsevier DOI Code:
WWW Link. 2408
Underwater object detection, Imbalanced detection, Noise removal, Factor-agnostic gradient re-weighting BibRef

Li, G.Q.[Guan-Qing], Huang, S.X.[Sheng-Xiang], Yin, Z.[Zhi], Zheng, N.S.[Nan-Shan], Zhang, K.F.[Ke-Fei],
Analysis of the Influence of Refraction-Parameter Deviation on Underwater Stereo-Vision Measurement with Flat Refraction Interface,
RS(16), No. 17, 2024, pp. 3286.
DOI Link 2409
BibRef

Chen, L.[Long], Xie, Y.Z.[Yun-Zhou], Li, Y.X.[Ya-Xin], Xu, Q.[Qi], Dong, J.Y.[Jun-Yu],
CWSCNet: Channel-Weighted Skip Connection Network for Underwater Object Detection,
IP(33), 2024, pp. 5206-5218.
IEEE DOI 2410
Feature extraction, Object detection, Convolution, Standards, Training, Semantics, Decoding, Underwater object detection, feature selection BibRef

Hou, X.[Xianghao], Hua, W.S.[Wei-Si], Chen, Y.X.[Yu-Xuan], Yang, Y.X.[Yi-Xin],
A Novel Beam-Domain Direction-of-Arrival Tracking Algorithm for an Underwater Target,
RS(16), No. 21, 2024, pp. 4074.
DOI Link 2411
BibRef

Xu, R.[Ruishen], Zhu, D.[Daqi], Chen, M.Z.[Ming-Zhi],
A novel underwater object detection enhanced algorithm based on YOLOv5-MH,
IET-IPR(18), No. 12, 2024, pp. 3415-3429.
DOI Link 2411
computer vision, image enhancement, object detection BibRef

Li, L.[Liang], Li, Y.P.[Yi-Ping], Wang, H.L.[Hai-Lin], Yue, C.H.[Cheng-Hai], Gao, P.Y.[Pei-Yan], Wang, Y.L.[Yu-Liang], Feng, X.S.[Xi-Sheng],
Side-Scan Sonar Image Generation Under Zero and Few Samples for Underwater Target Detection,
RS(16), No. 22, 2024, pp. 4134.
DOI Link 2412
BibRef

Xie, Z.R.[Zhuo-Ran], Yang, M.[Miao], Shen, M.J.[Meng-Jiao], Qiu, Y.[Yuquan], Wang, X.Y.[Xin-Yu],
FIOD-VUE: Focusing on Invariant Information in Object Detection of Varying Underwater Environment,
CirSysVideo(34), No. 11, November 2024, pp. 10743-10752.
IEEE DOI Code:
WWW Link. 2412
Frequency-domain analysis, Object detection, Feature extraction, Adaptation models, Training, Filters, Image color analysis, frequency BibRef

Hua, X.[Xia], Cui, X.P.[Xiao-Peng], Xu, X.H.[Xing-Hua], Qiu, S.H.[Shao-Hua], Li, Z.[Zhong],
Weakly Supervised Underwater Object Real-time Detection Based on High-resolution Attention Class Activation Mapping and Category Hierarchy,
PR(159), 2025, pp. 111111.
Elsevier DOI 2412
Underwater image, weakly supervised object detection, hierarchical network, Class Activation Mapping, network attention BibRef

Xu, H.[Huipu], Zhang, M.[Meixiang], Li, Y.Z.[Yong-Zhi],
GLIC: Underwater target detection based on global-local information coupling and multi-scale feature fusion,
JVCIR(105), 2024, pp. 104330.
Elsevier DOI 2501
Underwater object detection, Spatial pyramid pooling, Global-local information coupling, Multi-scale feature fusion BibRef

Avanthey, L.[Loïca], Beaudoin, L.[Laurent],
Dense In Situ Underwater 3D Reconstruction by Aggregation of Successive Partial Local Clouds,
RS(16), No. 24, 2024, pp. 4737.
DOI Link 2501
BibRef

Kapoor, M.[Meghna], Prummel, W.[Wieke], Giraldo, J.H.[Jhony H.], Subudhi, B.N.[Badri Narayan], Zakharova, A.[Anastasia], Bouwmans, T.[Thierry], Bansal, A.[Ankur],
Graph-based Moving Object Segmentation for underwater videos using semi-supervised learning,
CVIU(252), 2025, pp. 104290.
Elsevier DOI 2502
Graph learning, Semi-supervised learning, Underwater object segmentation, Deep learning BibRef

Li, H.Y.[Huan-Yu], Wang, H.[Hao], Zhang, Y.[Ying], Li, L.[Li], Ren, P.[Peng],
Underwater image captioning: Challenges, models, and datasets,
PandRS(220), 2025, pp. 440-453.
Elsevier DOI Code:
WWW Link. 2502
Underwater image captioning models, Underwater image captioning datasets, Image degradation, Meta-learning BibRef

Saleem, A.[Ashraf], Awad, A.[Ali], Paheding, S.[Sidike], Lucas, E.[Evan], Havens, T.C.[Timothy C.], Esselman, P.C.[Peter C.],
Understanding the Influence of Image Enhancement on Underwater Object Detection: A Quantitative and Qualitative Study,
RS(17), No. 2, 2025, pp. 185.
DOI Link 2502
BibRef

Rong, T.[Tian], Wang, Y.H.[Yu-Hang], Zhu, Q.G.[Qi-Guang], Wang, C.X.[Chen-Xu], Zhang, Y.C.[Yan-Chao], Li, J.F.[Jian-Feng], Zhou, Z.Q.[Zhi-Quan], Luo, Q.H.[Qing-Hua],
Sequential Multimodal Underwater Single-Photon Lidar Adaptive Target Reconstruction Algorithm Based on Spatiotemporal Sequence Fusion,
RS(17), No. 2, 2025, pp. 295.
DOI Link 2502
BibRef

Jin, J.H.[Jian-Hui], Jiang, Q.P.[Qiu-Ping], Wu, Q.Y.[Qing-Yuan], Xu, B.W.[Bin-Wei], Cong, R.M.[Run-Min],
Underwater Salient Object Detection via Dual-Stage Self-Paced Learning and Depth Emphasis,
CirSysVideo(35), No. 3, March 2025, pp. 2147-2160.
IEEE DOI Code:
WWW Link. 2503
Training, Feature extraction, Degradation, Transformers, Object detection, Iterative methods, Adaptation models, depth emphasis BibRef

Hong, L.[Lin], Wang, X.[Xin], Zhang, G.[Gan], Zhao, M.[Ming],
USOD10K: A New Benchmark Dataset for Underwater Salient Object Detection,
IP(34), 2025, pp. 1602-1615.
IEEE DOI Code:
WWW Link. 2503
Visualization, Benchmark testing, Task analysis, Transformers, Object detection, Convolution, Decoding, baseline BibRef

Chen, J.[Jun], Quan, W.T.[Wen-Ting], He, X.Q.[Xian-Qiang], Xu, M.[Ming], Li, C.[Caipin], Pan, D.[Delu],
Modeling the satellite instrument visibility range for detecting underwater targets,
PandRS(222), 2025, pp. 64-78.
Elsevier DOI 2503
Contrast threshold, Visibility range, Satellite instrument, Underwater targets BibRef


Wu, Q.Y.[Qing-Yao], Fu, Z.Q.[Zhen-Qi], Lin, H.[Hong], Ma, C.Y.[Chen-Yu], Tu, X.T.[Xiao-Tong], Ding, X.H.[Xing-Hao],
Effiseanet: Pioneering Lightweight Network for Underwater Salient Object Detection,
ACCV24(IV: 89-104).
Springer DOI 2412
BibRef

Yang, J.[Jinghe], Gong, M.M.[Ming-Ming], Pu, Y.[Ye],
Physics-informed Knowledge Transfer for Underwater Monocular Depth Estimation,
ECCV24(LXXI: 449-465).
Springer DOI 2412
BibRef

Saoud, L.S.[Lyes Saad], Niu, Z.W.[Zhen-Wei], Seneviratne, L.[Lakmal], Hussain, I.[Irfan],
Real-Time and Resource-Efficient Multi-Scale Adaptive Robotics Vision for Underwater Object Detection and Domain Generalization,
ICIP24(3917-3923)
IEEE DOI Code:
WWW Link. 2411
YOLO, Training, Technological innovation, Accuracy, Source coding, Robustness, Real-time systems, Robotic Vision, Marine Robotics BibRef

Nissar, M.[Mehvish], Subudhi, B.N.[Badri Narayan], Jakhetiya, V.[Vinit], Mishra, A.K.[Amit Kumar],
Underwater Change Detection Using Multiple Sampling-Based Probabilistic Learner and Feature Preservance Discriminator,
ICIP24(3924-3930)
IEEE DOI 2411
Training, Water, Surveillance, Scattering, Object detection, Turbidity, Feature extraction, Underwater object detection, deep learning, multi-level feature-preserving BibRef

Liang, X.[Xutao], Song, P.[Pinhao],
Excavating RoI Attention for Underwater Object Detection,
ICIP22(2651-2655)
IEEE DOI 2211
Deep learning, Image coding, Head, Object detection, Detectors, Feature extraction, Object Detection, Underwater, Attention, Vision Transformer BibRef

Liu, H., Song, P., Ding, R.,
Towards Domain Generalization In Underwater Object Detection,
ICIP20(1971-1975)
IEEE DOI 2011
Training, Detectors, Feature extraction, Task analysis, Object detection, Biological system modeling, Semantics, domain invariance BibRef

Fan, B.J.[Bao-Jie], Chen, W.[Wei], Cong, Y.[Yang], Tian, J.D.[Jian-Dong],
Dual Refinement Underwater Object Detection Network,
ECCV20(XX:275-291).
Springer DOI 2011
BibRef

Zhang, L.[Lu], Yang, X.[Xu], Liu, Z.Y.[Zhi-Yong], Qi, L.[Lu], Zhou, H.[Hao], Chiu, C.[Charles],
Single Shot Feature Aggregation Network for Underwater Object Detection,
ICPR18(1906-1911)
IEEE DOI 1812
Feature extraction, Object detection, Detectors, Task analysis, Training, Semantics, Convolutional neural networks BibRef

Rekik, F.[Farah], Ayedi, W.[Walid], Jallouli, M.[Mohamed],
Performance Evaluation of Multiscale Covariance Descriptor in Underwater Object Detection,
CIAP17(II:258-266).
Springer DOI 1711
BibRef

Cobb, J.T., Stack, J.R.,
In Situ Adaptive Feature Extraction for Underwater Target Classification,
AIPR07(42-47).
IEEE DOI 0710
BibRef

Chapter on Computational Vision, Regularization, Connectionist, Morphology, Scale-Space, Perceptual Grouping, Wavelets, Color, Sensors, Optical, Laser, Radar continues in
Color Sensors, Sensor Models .


Last update:Mar 17, 2025 at 20:02:03