14.5.5.1 Self-Supervised Learning for Object Detection and Segmentation

Chapter Contents (Back)
Self-Supervised. Learning. Object Detection.
See also Self-Supervised Learning.
See also Semi-Supervised Object Detection.

Tian, Q.[Qi], Wu, Y.[Ying], Yu, J.[Jie], Huang, T.S.[Thomas S.],
Self-supervised learning based on discriminative nonlinear features for image classification,
PR(38), No. 6, June 2005, pp. 903-917.
Elsevier DOI 0501
BibRef

Wu, Y.[Ying], Huang, T.S.[Thomas S.], Toyama, K.[Kentaro],
Self-Supervised Learning for Object Recognition based on Kernel Discriminant-EM Algorithm,
ICCV01(I: 275-280).
IEEE DOI 0106
BibRef

Zeng, Z.[Zeng], Yang, X.L.[Xu-Lei], Yu, Q.Y.[Qi-Yun], Yao, M.[Meng], Zhang, L.[Le],
SeSe-Net: Self-Supervised deep learning for segmentation,
PRL(128), 2019, pp. 23-29.
Elsevier DOI 1912
Self-Supervised learning, Deep learning, Segmentation, U-Net BibRef

Torpey, D.[David], Klein, R.[Richard],
On the robustness of self-supervised representations for multi-view object classification,
PRL(161), 2022, pp. 82-89.
Elsevier DOI 2209
Deep learning, Self-supervised learning, Representation learning BibRef

Song, Y.[Yaoye], Zhang, P.[Peng], Huang, W.[Wei], Zha, Y.F.[Yu-Fei], You, T.[Tao], Zhang, Y.N.[Yan-Ning],
Object detection based on cortex hierarchical activation in border sensitive mechanism and classification-GIou joint representation,
PR(137), 2023, pp. 109278.
Elsevier DOI 2302
Border sensitive mechanism, Cortex hierarchical activation, Object detection, Classification-GIoU joint representation BibRef


Wang, Z.Q.[Zhao-Qing], Li, Q.[Qiang], Zhang, G.X.[Guo-Xin], Wan, P.F.[Peng-Fei], Zheng, W.[Wen], Wang, N.N.[Nan-Nan], Gong, M.M.[Ming-Ming], Liu, T.L.[Tong-Liang],
Exploring Set Similarity for Dense Self-supervised Representation Learning,
CVPR22(16569-16578)
IEEE DOI 2210
Representation learning, Location awareness, Visualization, Semantics, Self-supervised learning, Object detection, Robustness, Self- semi- meta- Transfer/low-shot/long-tail learning BibRef

Hénaff, O.J.[Olivier J.], Koppula, S.[Skanda], Shelhamer, E.[Evan], Zoran, D.[Daniel], Jaegle, A.[Andrew], Zisserman, A.[Andrew], Carreira, J.[João], Arandjelovic, R.[Relja],
Object Discovery and Representation Networks,
ECCV22(XXVII:123-143).
Springer DOI 2211
BibRef

Cui, Z.T.[Zi-Teng], Zhu, Y.Y.[Ying-Ying], Gu, L.[Lin], Qi, G.J.[Guo-Jun], Li, X.X.[Xiao-Xiao], Zhang, R.[Renrui], Zhang, Z.H.[Zeng-Hui], Harada, T.[Tatsuya],
Exploring Resolution and Degradation Clues as Self-supervised Signal for Low Quality Object Detection,
ECCV22(IX:473-491).
Springer DOI 2211
BibRef

Hénaff, O.J.[Olivier J.], Koppula, S.[Skanda], Alayrac, J.B.[Jean-Baptiste], van den Oord, A.[Aaron], Vinyals, O.[Oriol], Carreira, J.[João],
Efficient Visual Pretraining with Contrastive Detection,
ICCV21(10066-10076)
IEEE DOI 2203
Visualization, Transfer learning, Performance gain, Feature extraction, Data models, Computational efficiency, Transfer/Low-shot/Semi/Unsupervised Learning BibRef

Yang, C.[Ceyuan], Wu, Z.R.[Zhi-Rong], Zhou, B.[Bolei], Lin, S.[Stephen],
Instance Localization for Self-supervised Detection Pretraining,
CVPR21(3986-3995)
IEEE DOI 2111
Location awareness, Transfer learning, Semantics, Object detection, Pattern recognition BibRef

Ericsson, L.[Linus], Gouk, H.[Henry], Hospedales, T.M.[Timothy M.],
How Well Do Self-Supervised Models Transfer?,
CVPR21(5410-5419)
IEEE DOI 2111
Visualization, Image recognition, Image color analysis, Computational modeling, Object detection, Predictive models BibRef

Ayush, K.[Kumar], Uzkent, B.[Burak], Meng, C.L.[Chen-Lin], Tanmay, K.[Kumar], Burke, M.[Marshall], Lobell, D.[David], Ermon, S.[Stefano],
Geography-Aware Self-Supervised Learning,
ICCV21(10161-10170)
IEEE DOI 2203
Training, Image segmentation, Supervised learning, Semantics, Object detection, Task analysis, Representation learning, Transfer/Low-shot/Semi/Unsupervised Learning BibRef

Xiong, Y.[Yuwen], Ren, M.[Mengye], Zeng, W.Y.[Wen-Yuan], Waabi, R.U.[Raquel Urtasun],
Self-Supervised Representation Learning from Flow Equivariance,
ICCV21(10171-10180)
IEEE DOI 2203
Representation learning, Image segmentation, Semantics, Crops, Object detection, Streaming media, Representation learning, Vision for robotics and autonomous vehicles BibRef

Zhang, Z.[Zaiwei], Girdhar, R.[Rohit], Joulin, A.[Armand], Misra, I.[Ishan],
Self-Supervised Pretraining of 3D Features on any Point-Cloud,
ICCV21(10232-10243)
IEEE DOI 2203
Training, Solid modeling, Image recognition, Object detection, Representation learning, 3D from multiview and other sensors BibRef

Chen, T.L.[Tian-Long], Frankle, J.[Jonathan], Chang, S.Y.[Shi-Yu], Liu, S.J.[Si-Jia], Zhang, Y.[Yang], Carbin, M.[Michael], Wang, Z.Y.[Zhang-Yang],
The Lottery Tickets Hypothesis for Supervised and Self-supervised Pre-training in Computer Vision Models,
CVPR21(16301-16311)
IEEE DOI 2111
Degradation, Image segmentation, Sensitivity, Computational modeling, Perturbation methods, Pattern recognition BibRef

Li, Y.D.[Yan-Dong], Huang, D.[Di], Qin, D.F.[Dan-Feng], Wang, L.Q.[Li-Qiang], Gong, B.Q.[Bo-Qing],
Improving Object Detection with Selective Self-supervised Self-training,
ECCV20(XXIX: 589-607).
Springer DOI 2010
BibRef

Lee, W.[Wonhee], Na, J.[Joonil], Kim, G.[Gunhee],
Multi-Task Self-Supervised Object Detection via Recycling of Bounding Box Annotations,
CVPR19(4979-4988).
IEEE DOI 2002
BibRef

Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
Multiple Instance Learning .


Last update:Aug 28, 2024 at 16:02:19