21.4.7 Drug Discovery

Chapter Contents (Back)
Drug Discovery.

Sonka, M., Grunkin, M.,
Image processing and analysis in drug discovery and clinical trials,
MedImg(21), No. 10, October 2002, pp. 1209-1211.
IEEE Top Reference. 0301
BibRef

Ye, X.B.[Xian-Bin], Guan, Q.L.[Quan-Long], Luo, W.Q.[Wei-Qi], Fang, L.D.[Liang-Da], Lai, Z.R.[Zhao-Rong], Wang, J.[Jun],
Molecular substructure graph attention network for molecular property identification in drug discovery,
PR(128), 2022, pp. 108659.
Elsevier DOI 2205
Molecular substructure, Graph attention, Molecular property identification BibRef

Yin, R.[Rong], Liu, R.[Ruyue], Hao, X.S.[Xiao-Shuai], Zhou, X.R.[Xing-Rui], Liu, Y.[Yong], Ma, C.[Can], Wang, W.P.[Wei-Ping],
Multi-Modal Molecular Representation Learning via Structure Awareness,
IP(34), 2025, pp. 3225-3238.
IEEE DOI 2506
Representation learning, Predictive models, Training, Graph neural networks, Feature extraction, Drug discovery, Atoms. BibRef

Torres, L.H.M.[Luis H.M.], Arrais, J.P.[Joel P.], Ribeiro, B.[Bernardete],
Rethinking transformers with convolution and graph embeddings for few-shot molecular property discovery,
PR(166), 2025, pp. 111657.
Elsevier DOI 2505
Convolutional transformer, Graph neural network, Few-shot learning, Meta-learning, Drug discovery BibRef


Husain, S.S.[Syed Sameed], Bober, J.[Jan], Irizar, A.[Amaia], Bober, M.[Miroslaw],
Bridging Self-Supervision and Mechanism of Action Discovery in Morphological Profiling,
Drug25(4278-4285)
IEEE DOI 2512
Training, Adaptation models, Biological system modeling, Imaging, Predictive models, Feature extraction, Compounds, Optimization, Painting BibRef

Li, Z.C.[Zi-Chao], Qiu, S.Q.[Shi-Qing], Ke, Z.[Zong],
Revolutionizing Drug Discovery: Integrating Spatial Transcriptomics with Advanced Computer Vision Techniques,
Drug25(4252-4258)
IEEE DOI 2512
Accuracy, Annotations, Computational modeling, Transcriptomics, Noise, Biomarkers, Drug discovery, Gene expression, Diseases, multi-task learning BibRef

Bazgir, A.[Adib], Zhang, Y.[Yuwen],
Drug Discovery Agent: An Automated Vision Detection System for Drug-Cell Interactions,
Drug25(4269-4277)
IEEE DOI Code:
WWW Link. 2512
Drugs, Adaptation models, Accuracy, Machine vision, Training data, Data models, Real-time systems, Drug discovery, Videos BibRef

Rao, J.H.[Jia-Hua], Lin, H.J.[Han-Jing], Chen, L.[Leyu], Xie, J.[Jiancong], Zheng, S.J.[Shuang-Jia], Yang, Y.D.[Yue-Dong],
Multi-modal Contrastive Learning with Negative Sampling Calibration for Phenotypic Drug Discovery,
CVPR25(30752-30762)
IEEE DOI 2508
Drugs, Phenotypes, Accuracy, Contrastive learning, Robustness, Drug discovery, Diseases, Painting, phenotypic drug discovery, contrastive learning BibRef

Patra, A.[Arijit], Wu, J.[Jinge], Wu, H.[Honghan], Thakur, A.[Anshul],
Towards Exploring Continual Learning for Toxicologic Pathology in Pharmaceutical Drug Discovery,
Drug25(4259-4268)
IEEE DOI 2512
Drugs, Pathology, Adaptation models, Image analysis, Machine learning, Transformers, Safety, Drug discovery BibRef

Kosciukiewicz, J.[Jakub], Rymarczyk, D.[Dawid], Zielinski, B.[Bartosz],
HCS-DFC: A Diffusion Classifier for Mode of Action Prediction Using Morphological Profiles,
Drug25(4246-4251)
IEEE DOI 2512
Accuracy, Computational modeling, Biological system modeling, Estimation, Predictive models, Drug discovery, Reliability, Painting BibRef

Simon, M.[Mylene], Schaub, N.J.[Nicholas J.], Yu, S.[Sunny], Ouladi, M.[Mohamed], Nagarajan, J.[Jayapriya], Bayankaram, S.P.[Sudharsan Prativadi], Bajcsy, P.[Peter], Hotaling, N.[Nathan],
Quantifying Variability in Microscopy Image Analyses for COVID-19 Drug Discovery,
CVMI21(3796-3804)
IEEE DOI 2109
Drugs, COVID-19, Coordinate measuring machines, Thresholding (Imaging), Microscopy, Measurement uncertainty, Hardware BibRef

Golkov, V.[Vladimir], Skwark, M.J.[Marcin J.], Mirchev, A.[Atanas], Dikov, G.[Georgi], Geanes, A.R.[Alexander R.], Mendenhall, J.[Jeffrey], Meiler, J.[Jens], Cremers, D.[Daniel], c
3D Deep Learning for Biological Function Prediction from Physical Fields,
3DV20(928-937)
IEEE DOI 2102
Predicting the biological function of molecules, be it proteins or drug-like compounds, from their atomic structure. Proteins, Atomic measurements, Electrostatics, Electric potential, Amino acids, Compounds, drug discovery BibRef

Chapter on Medical Applications, CAT, MRI, Ultrasound, Heart Models, Brain Models continues in
Blood Cells, Counting, Extraction, Analysis .


Last update:Dec 7, 2025 at 16:47:52