Sonka, M.,
Grunkin, M.,
Image processing and analysis in drug discovery and clinical trials,
MedImg(21), No. 10, October 2002, pp. 1209-1211.
IEEE Top Reference.
0301
BibRef
Ye, X.B.[Xian-Bin],
Guan, Q.L.[Quan-Long],
Luo, W.Q.[Wei-Qi],
Fang, L.D.[Liang-Da],
Lai, Z.R.[Zhao-Rong],
Wang, J.[Jun],
Molecular substructure graph attention network for molecular property
identification in drug discovery,
PR(128), 2022, pp. 108659.
Elsevier DOI
2205
Molecular substructure, Graph attention, Molecular property identification
BibRef
Yin, R.[Rong],
Liu, R.[Ruyue],
Hao, X.S.[Xiao-Shuai],
Zhou, X.R.[Xing-Rui],
Liu, Y.[Yong],
Ma, C.[Can],
Wang, W.P.[Wei-Ping],
Multi-Modal Molecular Representation Learning via Structure Awareness,
IP(34), 2025, pp. 3225-3238.
IEEE DOI
2506
Representation learning, Predictive models, Training,
Graph neural networks, Feature extraction, Drug discovery, Atoms.
BibRef
Torres, L.H.M.[Luis H.M.],
Arrais, J.P.[Joel P.],
Ribeiro, B.[Bernardete],
Rethinking transformers with convolution and graph embeddings for
few-shot molecular property discovery,
PR(166), 2025, pp. 111657.
Elsevier DOI
2505
Convolutional transformer, Graph neural network,
Few-shot learning, Meta-learning, Drug discovery
BibRef
Li, Z.C.[Zi-Chao],
Qiu, S.Q.[Shi-Qing],
Ke, Z.[Zong],
Revolutionizing Drug Discovery: Integrating Spatial Transcriptomics
with Advanced Computer Vision Techniques,
Drug25(4252-4258)
IEEE DOI
2512
Accuracy, Annotations, Computational modeling, Transcriptomics,
Noise, Biomarkers, Drug discovery, Gene expression, Diseases,
multi-task learning
BibRef
Bazgir, A.[Adib],
Zhang, Y.[Yuwen],
Drug Discovery Agent: An Automated Vision Detection System for
Drug-Cell Interactions,
Drug25(4269-4277)
IEEE DOI Code:
WWW Link.
2512
Drugs, Adaptation models, Accuracy, Machine vision, Training data,
Data models, Real-time systems, Drug discovery, Videos
BibRef
Rao, J.H.[Jia-Hua],
Lin, H.J.[Han-Jing],
Chen, L.[Leyu],
Xie, J.[Jiancong],
Zheng, S.J.[Shuang-Jia],
Yang, Y.D.[Yue-Dong],
Multi-modal Contrastive Learning with Negative Sampling Calibration
for Phenotypic Drug Discovery,
CVPR25(30752-30762)
IEEE DOI
2508
Drugs, Phenotypes, Accuracy, Contrastive learning, Robustness,
Drug discovery, Diseases, Painting, phenotypic drug discovery,
contrastive learning
BibRef
Patra, A.[Arijit],
Wu, J.[Jinge],
Wu, H.[Honghan],
Thakur, A.[Anshul],
Towards Exploring Continual Learning for Toxicologic Pathology in
Pharmaceutical Drug Discovery,
Drug25(4259-4268)
IEEE DOI
2512
Drugs, Pathology, Adaptation models, Image analysis,
Machine learning, Transformers, Safety, Drug discovery
BibRef
Kosciukiewicz, J.[Jakub],
Rymarczyk, D.[Dawid],
Zielinski, B.[Bartosz],
HCS-DFC: A Diffusion Classifier for Mode of Action Prediction Using
Morphological Profiles,
Drug25(4246-4251)
IEEE DOI
2512
Accuracy, Computational modeling, Biological system modeling,
Estimation, Predictive models, Drug discovery, Reliability,
Painting
BibRef
Simon, M.[Mylene],
Schaub, N.J.[Nicholas J.],
Yu, S.[Sunny],
Ouladi, M.[Mohamed],
Nagarajan, J.[Jayapriya],
Bayankaram, S.P.[Sudharsan Prativadi],
Bajcsy, P.[Peter],
Hotaling, N.[Nathan],
Quantifying Variability in Microscopy Image Analyses for COVID-19
Drug Discovery,
CVMI21(3796-3804)
IEEE DOI
2109
Drugs, COVID-19, Coordinate measuring machines,
Thresholding (Imaging), Microscopy, Measurement uncertainty, Hardware
BibRef
Golkov, V.[Vladimir],
Skwark, M.J.[Marcin J.],
Mirchev, A.[Atanas],
Dikov, G.[Georgi],
Geanes, A.R.[Alexander R.],
Mendenhall, J.[Jeffrey],
Meiler, J.[Jens],
Cremers, D.[Daniel], c
3D Deep Learning for Biological Function Prediction from Physical
Fields,
3DV20(928-937)
IEEE DOI
2102
Predicting the biological function of molecules, be it proteins or
drug-like compounds, from their atomic structure.
Proteins, Atomic measurements,
Electrostatics, Electric potential, Amino acids, Compounds, drug discovery
BibRef
Chapter on Medical Applications, CAT, MRI, Ultrasound, Heart Models, Brain Models continues in
Blood Cells, Counting, Extraction, Analysis .