Sklansky, J.,
Thresholded Convolutions Operations,
JACM(17), No. 1, January 1970, pp. 161-165.
BibRef
7001
Abramatic, J.F.,
Faugeras, O.D.,
Sequential Convolution Techniques for Image Filtering,
ASSP(30), No. 1, 1982, pp. 1-10.
BibRef
8200
Ney, H.,
A Dynamic Programming Algorithm for Nonlinear Smoothing,
SP(5), 1983, pp. 163-173.
BibRef
8300
Ferrari, L.A.[Leonard A.],
Sklansky, J.[Jack],
A Note on Duhamel Integrals and Running Average Filters,
CVGIP(29), No. 3, 1985, pp. 358-360.
Elsevier DOI
BibRef
8500
Gourlay, A.R.,
Implicit Convolution,
IVC(3), No. 1, February 1985, pp. 15-23.
Elsevier DOI
BibRef
8502
Wiejak, J.S.,
Buxton, H.,
Buxton, B.F.,
Convolution with Separable Masks for Early Image Processing,
CVGIP(32), No. 3, December 1985, pp. 279-290.
Elsevier DOI
BibRef
8512
Basu, A.[Anup],
Brown, C.M.[Christopher M.],
Algorithms and Hardware for Efficient Image Smoothing,
CVGIP(40), No. 2, November 1987, pp. 131-146.
Elsevier DOI
BibRef
8711
O'Leary, D.P.[Dianne P.],
Some Algorithms for Approximating Convolutions,
CVGIP(41), No. 3, March 1988, pp. 333-345.
Elsevier DOI
BibRef
8803
Lohar, G.,
Mukherjee, D.P.,
Dutta Majumder, D.,
On a Decomposition of 2-D Circular Convolution,
PRL(13), 1992, pp. 701-706.
BibRef
9200
Glasbey, C.A.,
Jones, R.,
Fast Computation of Moving Average and Related Filters in
Octagonal Windows,
PRL(18), No. 6, June 1997, pp. 555-565.
9710
BibRef
Cocchia, F.,
Carrato, S.,
Ramponi, G.,
Design and Real-Time Implementation of A 3-D Rational Filter for
Edge-Preserving Smoothing,
Consumer(43), No. 4, November 1997, pp. 1291-1300.
9801
BibRef
Ramponi, G.,
A rational edge-preserving smoother,
ICIP95(I: 151-154).
IEEE DOI
9510
BibRef
Gorecki, C.,
Trolard, B.,
Optoelectronic Implementation of Adaptive Image Preprocessing
Using Hybrid Modulations of Epson Liquid-Crystal Television:
Applications to Smoothing and Edge Enhancement,
OptEng(37), No. 3, March 1998, pp. 924-930.
9804
BibRef
Karasik, Y.B.,
A Recursive Formula for Convolutions/Correlations and
Its Application in Pattern-Recognition,
PRL(19), No. 1, January 1998, pp. 53-56.
9807
BibRef
Karasik, Y.B.,
How To Compute 3-Dimensional Convolution and/or Correlation Optically:
A Mathematical Foundation,
ModOpt(45), No. 4, April 1998, pp. 817-823.
9806
BibRef
Earlier:
How to Implement N-Dimensional Image Processing Optically,
ICIP97(I: 715-718).
IEEE DOI
BibRef
Boykov, Y.Y.[Yuri Y.],
Veksler, O.[Olga],
Zabih, R.[Ramin],
A Variable Window Approach to Early Vision,
PAMI(20), No. 12, December 1998, pp. 1283-1294.
IEEE DOI
BibRef
9812
Earlier:
A Variable Neighborhood Approach to Early Vision,
DARPA97(1453-1458).
Change the window at object boundaries to get better results.
Apply to restoration, motion, stereo, correspondence.
BibRef
Veksler, O.[Olga],
Efficient parallel optimization for potts energy with hierarchical
fusion,
CVPR15(887-895)
IEEE DOI
1510
BibRef
Boykov, Y.Y.[Yuri Y.],
Veksler, O.[Olga],
Zabih, R.[Ramin],
Markov Random Fields with Efficient Approximations,
CVPR98(648-655).
IEEE DOI MRF Segmentation
BibRef
9800
McCoy, J.S.[J. Scott],
Convolution algorithm for efficient hardware implementation,
US_Patent5,926,580, Jul 20, 1999
WWW Link.
BibRef
9907
Sangwine, S.J.[Stephen J.],
Ell, T.A.[Todd A.],
Karasik, Y.B.,
Evaluation of 3-D Convolution by 2-D Filtering,
AppOpt(36), No. 29, 1997.
BibRef
9700
Sangwine, S.J.[Stephen J.],
Ell, T.A.[Todd A.],
Colour image filters based on hypercomplex convolution,
VISP(147), No. 2, April 2000, pp. 89.
0005
BibRef
Ell, T.A.[Todd A.],
Sangwine, S.J.[Stephen J.],
Hypercomplex Fourier Transforms of Color Images,
IP(16), No. 1, January 2007, pp. 22-35.
IEEE DOI
0701
BibRef
Earlier: A2, A1:
ICIP01(I: 137-140).
IEEE DOI
0108
BibRef
Sangwine, S.J.,
Ell, T.A.,
Vector zone plates as test patterns for linear vector filters,
ICIP02(II: 361-364).
IEEE DOI
0210
BibRef
Sangwine, S.J.[Stephen J.],
Ell, T.A.[Todd A.],
Hypercomplex Auto- And Cross-Correlation of Color Images,
ICIP99(IV:319-322).
IEEE DOI
BibRef
9900
Ell, T.A.[Todd A.],
Multi-Vector Color-Image Filters,
ICIP07(V: 245-248).
IEEE DOI
0709
BibRef
And:
Hypercomplex Color Affine Filters,
ICIP07(V: 249-252).
IEEE DOI
0709
BibRef
Ell, T.A.[Todd A.],
Hypercomplex Wiener-Khintchine Theorem with Application to Color Image
Correlation,
ICIP00(Vol II: 792-795).
IEEE DOI
0008
BibRef
Evans, C.,
Sangwine, S.J.,
Hypercomplex Color-sensitive Smoothing Filters,
ICIP00(Vol I: 541-544).
IEEE DOI
0008
BibRef
Mount, D.M.,
Kanungo, T.,
Netanyahu, N.S.,
Piatko, C.D.,
Silverman, R.,
Wu, A.Y.,
Approximating large convolutions in digital images,
IP(10), No. 12, December 2001, pp. 1826-1835.
IEEE DOI
0201
BibRef
Earlier:
UMD--TR4017, May 1999.
WWW Link.
BibRef
Reichenbach, S.E.,
Geng, F.,
Two-dimensional cubic convolution,
IP(12), No. 8, August 2003, pp. 857-865.
IEEE DOI
0308
BibRef
Toivonen, T.[Tuukka],
Heikkilä, J.[Janne],
Video Filtering With Fermat Number Theoretic Transforms Using Residue
Number System,
CirSysVideo(16), No. 1, January 2006, pp. 92-101.
IEEE DOI
0601
Implementation of convolution filters.
BibRef
Sun, C.M.[Chang-Ming],
Moving average algorithms for diamond, hexagon, and general polygonal
shaped window operations,
PRL(27), No. 6, 15 April 2006, pp. 556-566.
Elsevier DOI Moving average algorithm; Diamond shaped windows; Hexagon shaped windows; Polygonal shaped windows; Local statistics
0604
BibRef
Lampert, C.H.,
Wirjadi, O.,
An Optimal Nonorthogonal Separation of the Anisotropic Gaussian
Convolution Filter,
IP(15), No. 11, November 2006, pp. 3501-3513.
IEEE DOI
0610
BibRef
Palomares, J.M.,
Gonzalez, J.,
Ros, E.,
Prieto, A.,
General Logarithmic Image Processing Convolution,
IP(15), No. 11, November 2006, pp. 3602-3608.
IEEE DOI
0610
BibRef
Reju, V.G.,
Koh, S.N.,
Soon, I.Y.,
Convolution Using Discrete Sine and Cosine Transforms,
SPLetters(14), No. 7, July 2007, pp. 445-448.
IEEE DOI
0707
BibRef
Suresh, K.,
Sreenivas, T.V.,
Block Convolution Using Discrete Trigonometric Transforms and Discrete
Fourier Transform,
SPLetters(15), No. 1, 2008, pp. 469-472.
IEEE DOI
0806
BibRef
Argyriou, V.,
Vlachos, T.,
Piroddi, R.,
Gradient-Adaptive Normalized Convolution,
SPLetters(15), No. 1, 2008, pp. 489-492.
IEEE DOI
0806
BibRef
Munoz-Barrutia, A.[Arrate],
Artaechevarria, X.[Xabier],
Ortiz-de-Solorzano, C.[Carlos],
Spatially Variant Convolution With Scaled B-Splines,
IP(19), No. 1, January 2010, pp. 11-24.
IEEE DOI
1001
BibRef
Earlier: A2, A1, A3:
Restoration of Biomedical Images using Locally Adaptive B-Spline
Smoothing,
ICIP07(II: 425-428).
IEEE DOI
0709
BibRef
Gil, D.[Debora],
Hernàndez-Sabaté, A.[Aura],
Burnat, M.[Mireia],
Jansen, S.[Steven],
Martínez-Villalta, J.[Jordi],
Structure-Preserving Smoothing of Biomedical Images,
PR(44), No. 9, September 2011, pp. 1842-1851.
Elsevier DOI
1106
BibRef
Earlier:
CAIP09(427-434).
Springer DOI
0909
Non-linear smoothing; Differential geometry; Anatomical structures
segmentation; Cardiac magnetic resonance; Computerized tomography
BibRef
Martinez, J.,
Heusdens, R.,
Hendriks, R.C.,
A Generalized Poisson Summation Formula and its Application to Fast
Linear Convolution,
SPLetters(18), No. 9, September 2011, pp. 501-504.
IEEE DOI
1108
BibRef
Simois, F.J.,
Acha, J.I.,
A New Algorithm for Real Data Convolutions With j -Circulants,
SPLetters(18), No. 11, November 2011, pp. 655-658.
IEEE DOI
1112
BibRef
Milanfar, P.[Peyman],
Symmetrizing Smoothing Filters,
SIIMS(6), No. 1, 2013, pp. 263-284.
DOI Link
1304
BibRef
Wei, J.N.[Jia-Ning],
Bouman, C.A.,
Allebach, J.P.,
Fast Space-Varying Convolution Using Matrix Source Coding With
Applications to Camera Stray Light Reduction,
IP(23), No. 5, May 2014, pp. 1965-1979.
IEEE DOI
1405
convolution
BibRef
Huo, H.[Haiye],
A new convolution theorem associated with the linear canonical
transform,
SIViP(13), No. 1, February 2019, pp. 127-133.
Springer DOI
1901
BibRef
Aguilar-González, A.[Abiel],
Arias-Estrada, M.[Miguel],
Pérez-Patricio, M.[Madaín],
Camas-Anzueto, J.L.,
An FPGA 2D-convolution unit based on the CAPH language,
RealTimeIP(16), No. 2, April 2019, pp. 305-319.
Springer DOI
1904
BibRef
Chun, I.Y.[Il Yong],
Hong, D.[David],
Adcock, B.[Ben],
Fessler, J.A.[Jeffrey A.],
Convolutional Analysis Operator Learning: Dependence on Training Data,
SPLetters(26), No. 8, August 2019, pp. 1137-1141.
IEEE DOI
1908
convolution, probability, unsupervised learning,
convolutional analysis operator learning, training data, CAOL,
dependence on training sample size
BibRef
Ramasinghe, S.[Sameera],
Khan, S.H.[Salman H.],
Barnes, N.M.[Nick M.],
Gould, S.[Stephen],
Representation Learning on Unit Ball with 3D Roto-translational
Equivariance,
IJCV(128), No. 6, June 2020, pp. 1612-1634.
Springer DOI
2006
BibRef
And:
Blended Convolution and Synthesis for Efficient Discrimination of 3D
Shapes,
WACV20(21-31)
IEEE DOI
2006
Shape, Convolution, Kernel, Feature extraction, Solid modeling
Volumetric convolution.
BibRef
Rahman, S.[Shafin],
Khan, S.H.[Salman H.],
Barnes, N.M.[Nick M.],
Khan, F.S.[Fahad Shahbaz],
Any-shot Object Detection,
ACCV20(III:89-106).
Springer DOI
2103
BibRef
Roddy, P.J.,
McEwen, J.D.,
Sifting Convolution on the Sphere,
SPLetters(28), 2021, pp. 304-308.
IEEE DOI
2102
Convolution, Harmonic analysis, Kernel, Standards, Transforms,
Hilbert space, Convolution, 2-sphere, spherical harmonics
BibRef
Xiao, Y.Q.[You-Qing],
Cai, Z.C.[Zhan-Chuan],
Yuan, X.X.[Xi-Xi],
YuvConv: Multi-Scale Non-Uniform Convolution Structure Based on YUV
Color Model,
MultMed(23), 2021, pp. 2533-2544.
IEEE DOI
2108
Tensile stress, Convolution, Machine learning, Spatial resolution,
Computational modeling, Task analysis, Feature extraction, YuvConv,
WideResnet
BibRef
Huang, D.[Di],
Zhang, R.[Rui],
Zhang, X.S.[Xi-Shan],
Wu, F.[Fan],
Wang, X.Z.[Xian-Zhuo],
Jin, P.W.[Peng-Wei],
Liu, S.L.[Shao-Li],
Li, L.[Ling],
Chen, Y.J.[Yun-Ji],
A Decomposable Winograd Method for N-D Convolution Acceleration in
Video Analysis,
IJCV(129), No. 10, October 2021, pp. 2806-2826.
Springer DOI
2110
BibRef
Jonsson, J.[Joel],
Cheeseman, B.L.[Bevan L.],
Maddu, S.[Suryanarayana],
Gonciarz, K.[Krzysztof],
Sbalzarini, I.F.[Ivo F.],
Parallel Discrete Convolutions on Adaptive Particle Representations
of Images,
IP(31), 2022, pp. 4197-4212.
IEEE DOI
2206
Image reconstruction, Image resolution, Image processing,
Microscopy, Convolution, Data structures, Signal resolution,
deconvolution
BibRef
Wei, X.[Xuan],
Su, S.X.[Shi-Xiang],
Wei, Y.[Yun],
Lu, X.B.[Xiao-Bo],
Rotational Convolution:
Rethinking Convolution for Downside Fisheye Images,
IP(32), 2023, pp. 4355-4364.
IEEE DOI
2308
Convolution, Kernel, Standards, Cameras, Feature extraction,
Task analysis, Object detection, Rotational convolution, object detection
BibRef
Maggioni, M.[Matteo],
Tanay, T.[Thomas],
Babiloni, F.[Francesca],
McDonagh, S.[Steven],
Leonardis, A.[Aleš],
Tunable Convolutions with Parametric Multi-Loss Optimization,
CVPR23(20226-20236)
IEEE DOI
2309
BibRef
Wu, H.[Hai],
Wen, C.[Chenglu],
Shi, S.S.[Shao-Shuai],
Li, X.[Xin],
Wang, C.[Cheng],
Virtual Sparse Convolution for Multimodal 3D Object Detection,
CVPR23(21653-21662)
IEEE DOI
2309
BibRef
Wu, W.X.[Wen-Xuan],
Fuxin, L.[Li],
Shan, Q.[Qi],
PointConvFormer: Revenge of the Point-based Convolution,
CVPR23(21802-21813)
IEEE DOI
2309
BibRef
He, S.[Shwai],
Jiang, C.[Chenbo],
Dong, D.[Daize],
Ding, L.[Liang],
SD-Conv: Towards the Parameter-Efficiency of Dynamic Convolution,
WACV23(6443-6452)
IEEE DOI
2302
Costs, Convolution, Computational modeling, Redundancy,
Computational efficiency, Task analysis, and algorithms (including transfer)
BibRef
Varga, L.A.[Leon Amadeus],
Messmer, M.[Martin],
Benbarka, N.[Nuri],
Zell, A.[Andreas],
Wavelength-aware 2D Convolutions for Hyperspectral Imaging,
WACV23(3777-3786)
IEEE DOI
2302
Training, Deep learning, Convolution, Image color analysis,
Inspection, Cameras, Recording, Remote Sensing
BibRef
Hamaguchi, R.[Ryuhei],
Furukawa, Y.[Yasutaka],
Onishi, M.[Masaki],
Sakurada, K.[Ken],
Heterogeneous Grid Convolution for Adaptive, Efficient, and
Controllable Computation,
CVPR21(13941-13950)
IEEE DOI
2111
Convolutional codes, Location awareness, Image segmentation,
Convolution, Roads, Semantics, Computer architecture
BibRef
Chen, J.[Jin],
Wang, X.J.[Xi-Jun],
Guo, Z.C.[Zi-Chao],
Zhang, X.Y.[Xiang-Yu],
Sun, J.[Jian],
Dynamic Region-Aware Convolution,
CVPR21(8060-8069)
IEEE DOI
2111
Matched filters, Visualization, Convolution, Face recognition,
Semantics, Object detection, Information filters
BibRef
Arizumi, N.,
Piecewise Polynomial Approximation Method for Convolution With Large
Kernel,
ICIP20(3080-3083)
IEEE DOI
2011
Kernel, Convolution, Image processing, Cameras, Real-time systems,
Robots, Splines (mathematics), high-resolution image, convolution,
faster computation
BibRef
Nguyen, A.D.,
Choi, S.,
Kim, W.,
Lee, S.,
Lin, W.,
Statistical Convolution On Unordered Point Set,
ICIP20(3468-3472)
IEEE DOI
2011
Feature extraction, Convolution,
Task analysis, Computer architecture, Neural networks, Shape,
Deep Learning
BibRef
Carranza, C.,
Llamocca, D.,
Pattichis, M.,
Fast and Scalable 2D Convolutions and Cross-correlations for
Processing Image Databases and Videos on CPUs,
SSIAI20(70-73)
IEEE DOI
2009
convolutional neural nets, fast Fourier transforms,
input-output programs, microprocessor chips, optimisation
BibRef
Sekikawa, Y.[Yusuke],
Ishikawa, K.[Kohta],
Hara, K.[Kosuke],
Yoshida, Y.[Yuuichi],
Suzuki, K.[Koichiro],
Sato, I.[Ikuro],
Saito, H.[Hideo],
Constant Velocity 3D Convolution,
3DV18(343-351)
IEEE DOI
1812
approximation theory, cameras, convolution, distance measurement,
feature extraction, image representation, image sequences,
Fourier transform
BibRef
Wang, H.[Hui],
Wang, Y.[Yue],
Cao, J.J.[Jun-Jie],
Liu, X.P.[Xiu-Ping],
Structure-Preserving Texture Smoothing via Adaptive Patches,
PSIVTWS17(311-324).
Springer DOI
1806
BibRef
Szegedy, C.[Christian],
Liu, W.[Wei],
Jia, Y.Q.[Yang-Qing],
Sermanet, P.[Pierre],
Reed, S.[Scott],
Anguelov, D.[Dragomir],
Erhan, D.[Dumitru],
Vanhoucke, V.[Vincent],
Rabinovich, A.[Andrew],
Going deeper with convolutions,
CVPR15(1-9)
IEEE DOI
1510
BibRef
Yoshizawa, S.[Shin],
Yokota, H.[Hideo],
Fast L1 Gaussian convolution via domain splitting,
ICIP14(2908-2912)
IEEE DOI
1502
Approximation algorithms
BibRef
Fanello, S.R.[Sean Ryan],
Keskin, C.[Cem],
Kohli, P.[Pushmeet],
Izadi, S.[Shahram],
Shotton, J.[Jamie],
Criminisi, A.[Antonio],
Pattacini, U.[Ugo],
Paek, T.[Tim],
Filter Forests for Learning Data-Dependent Convolutional Kernels,
CVPR14(1709-1716)
IEEE DOI
1409
Decision Trees
BibRef
Jackett, C.J.,
Ollington, R.,
Lovell, J.L.,
Efficient Digital FFT Convolution with Boundary Kernel
Renormalisation,
DICTA13(1-6)
IEEE DOI
1402
convolution
BibRef
Iandola, F.N.[Forrest N.],
Sheffield, D.[David],
Anderson, M.J.[Michael J.],
Phothilimthana, P.M.[Phitchaya Mangpo],
Keutzer, K.[Kurt],
Communication-minimizing 2D convolution in GPU registers,
ICIP13(2116-2120)
IEEE DOI
1402
Convolution;GPU;autotuning;parallel
BibRef
Boldyš, J.[Jirí],
Flusser, J.[Jan],
Invariants to Symmetrical Convolution with Application to Dihedral
Kernel Symmetry,
CIAP13(II:369-378).
Springer DOI
1309
BibRef
Gonzalez, D.[Damien],
Malgouyres, R.[Rémy],
Esbelin, H.A.[Henri-Alex],
Samir, C.[Chafik],
Convergence of Level-Wise Convolution Differential Estimators,
DGCI13(335-346).
Springer DOI
1304
BibRef
Earlier:
Fast Level-Wise Convolution,
IWCIA12(223-233).
Springer DOI
1211
BibRef
Wesierski, D.[Daniel],
Mkhinini, M.[Maher],
Horain, P.[Patrick],
Jezierska, A.[Anna],
Fast recursive ensemble convolution of Haar-like features,
CVPR12(3689-3696).
IEEE DOI
1208
BibRef
Albanese, G.[Giulia],
Cipolla, M.[Marco],
Valenti, C.[Cesare],
Genetic Normalized Convolution,
CIAP11(I: 670-679).
Springer DOI
1109
BibRef
Svoboda, D.[David],
Efficient Computation of Convolution of Huge Images,
CIAP11(I: 453-462).
Springer DOI
1109
BibRef
Hu, X.[Xin],
Peng, H.[Hui],
Kesker, J.[Joseph],
Cai, X.[Xiang],
Wee, W.G.[William G.],
Lee, J.H.[Jing-Huei],
An Improved Adaptive Smoothing Method,
CIAP09(757-766).
Springer DOI
0909
BibRef
Belt, H.J.W.,
Word length reduction for the integral image,
ICIP08(805-808).
IEEE DOI
0810
Sums of areas.
BibRef
Knutsson, H.[Hans],
Westin, C.F.[Carl-Fredrik],
Andersson, M.[Mats],
Representing Local Structure Using Tensors II,
SCIA11(545-556).
Springer DOI
1105
BibRef
Brun, A.,
Westin, C.F.,
Haker, S.,
Knutsson, H.,
A Tensor-Like Representation for Averaging, Filtering and Interpolation
of 3-D Object Orientation Data,
ICIP05(III: 1092-1095).
IEEE DOI
0512
BibRef
Lumsdaine, A.,
Wyatt, Jr., J.L.,
Elfadel, I.M.,
Nonlinear Analog Networks for Image Smoothing and Segmentation,
MIT AI Memo-1280, January 1991.
BibRef
9101
Deriche, R.,
Cocquerez, J.P.,
Almouzny, G.,
An efficient method to build early image description,
ICPR88(I: 588-590).
IEEE DOI
8811
BibRef
Pan, F.[Feng],
Gu, W.K.[Wei-Kang],
Jin, R.J.[Ren-Jie],
Yao, Q.D.[Qin-Dong],
One-pass preprocessing algorithm for real-time image processing system,
ICPR88(II: 851-853).
IEEE DOI
8811
BibRef
Chapter on 2-D Feature Analysis, Extraction and Representations, Shape, Skeletons, Texture continues in
Fourier Descriptors, DFT, FFT Computation, Use, Frequency Analysis .