Lai, S.H.[Shang-Hong],
Robust Image Matching under Partial Occlusion and Spatially Varying
Illumination Change,
CVIU(78), No. 1, April 2000, pp. 84-98.
DOI Link
0004
BibRef
Lai, S.H.[Shang-Hong],
Fang, M.[Ming],
Robust and Efficient Image Alignment with Spatially-Varying
Illumination Models,
CVPR99(II: 167-172).
IEEE DOI Alignment when intensity (lighting) changes between views.
BibRef
9900
Wei, S.D.[Shou-Der],
Lai, S.H.[Shang-Hong],
Robust and Efficient Image Alignment Based on Relative Gradient
Matching,
IP(15), No. 10, October 2006, pp. 2936-2943.
IEEE DOI
0609
BibRef
Earlier:
Robust face recognition under lighting variations,
ICPR04(I: 354-357).
IEEE DOI
0409
BibRef
Earlier: A2, A1:
Reliable image matching based on relative gradients,
ICPR02(II: 802-805).
IEEE DOI
0211
See also Computation of optical flow under non-uniform brightness variations.
BibRef
Su, H.R.[Hong-Ren],
Lai, S.H.[Shang-Hong],
CT-MR Image Registration in 3D K-Space Based on Fourier Moment Matching,
PSIVT11(II: 299-310).
Springer DOI
1111
BibRef
Su, H.R.[Hong-Ren],
Kuo, H.Y.[Hao-Yuan],
Lai, S.H.[Shang-Hong],
Wu, C.C.[Chin-Chia],
Fast 3D Object Alignment from Depth Image with 3D Fourier Moment
Matching on GPU,
3DV14(179-186)
IEEE DOI
1503
Fourier transforms
BibRef
Su, H.R.[Hong-Ren],
Lai, S.H.[Shang-Hong],
Tsai, Y.H.[Ya-Hui],
Robust Fourier-Based Image Alignment with Gradient Complex Image,
ICPR10(2378-2381).
IEEE DOI
1008
BibRef
Hsieh, C.K.,
Lai, S.H.[Shang-Hong],
Chen, Y.C.,
An Optical Flow-Based Approach to Robust Face Recognition Under
Expression Variations,
IP(19), No. 1, January 2010, pp. 233-240.
IEEE DOI
1001
BibRef
Pan, W.H.[Wei-Hau],
Wei, S.D.[Shou-Der],
Lai, S.H.[Shang-Hong],
Efficient NCC-Based Image Matching in Walsh-Hadamard Domain,
ECCV08(III: 468-480).
Springer DOI
0810
BibRef
Yang, C.H.T.[Chyuan-Huei Thomas],
Lai, S.H.[Shang-Hong],
Chang, L.W.[Long-Wen],
Hybrid image matching combining Hausdorff distance with normalized
gradient matching,
PR(40), No. 4, April 2007, pp. 1173-1181.
Elsevier DOI
0701
Image matching; Illumination variation; Face recognition;
Hausdorff distance; Normalized gradient
BibRef
Ping, Z.L.[Zi-Liang],
Ren, H.P.[Hai-Ping],
Zou, J.[Jian],
Sheng, Y.L.[Yun-Long],
Bo, W.[Wurigen],
Generic orthogonal moments: Jacobi-Fourier moments for invariant image
description,
PR(40), No. 4, April 2007, pp. 1245-1254.
Elsevier DOI
0701
Jacobi polynomial; Multi-distorted invariance; Jacobi-Fourier Moments;
Image reconstruction error; Noise sensibility
See also Errata and comments on Generic orthogonal moments: Jacobi-Fourier moments for invariant image description.
BibRef
Xiao, B.[Bin],
Ma, J.F.[Jian-Feng],
Wang, X.[Xuan],
Image analysis by Bessel-Fourier moments,
PR(43), No. 8, August 2010, pp. 2620-2629.
Elsevier DOI
1006
Bessel function; Orthogonal moments; Images reconstruction; Image
recognition; Invariant moments
BibRef
Hoang, T.V.[Thai V.],
Tabbone, S.[Salvatore],
Errata and comments on 'Generic orthogonal moments: Jacobi-Fourier
moments for invariant image description',
PR(46), No. 11, November 2013, pp. 3148-3155.
Elsevier DOI
1306
Jacobi polynomials; Legendre polynomials; Chebyshev
polynomials; Zernike moments; Pseudo-Zernike moments; Orthogonal
Fourier-Mellin moments; Chebyshev-Fourier moments;
Pseudo-Jacobi-Fourier moments
See also Generic orthogonal moments: Jacobi-Fourier moments for invariant image description.
BibRef
Upneja, R.[Rahul],
Singh, C.[Chandan],
Fast computation of Jacobi-Fourier moments for invariant image
recognition,
PR(48), No. 5, 2015, pp. 1836-1843.
Elsevier DOI
1502
Jacobi-Fourier moments
See also Comments on 'fast computation of jacobi-Fourier moments for invariant image recognition'.
BibRef
Sáez-Landete, J.[José],
Comments on 'fast computation of jacobi-Fourier moments for invariant
image recognition',
PR(67), No. 1, 2017, pp. 16-22.
Elsevier DOI
1704
Jacobi polynomials
See also Fast computation of Jacobi-Fourier moments for invariant image recognition.
BibRef
Camacho-Bello, C.,
Toxqui-Quitl, C.,
Padilla-Vivanco, A.,
Baez-Rojas, J.J.,
High-precision and fast computation of Jacobi-Fourier moments for
image description,
JOSA-A(31), No. 1, January 2014, pp. 124-134.
DOI Link
1402
Image processing
BibRef
Hu, H.T.[Hai-Tao],
Zhang, Y.D.[Ya-Dong],
Shao, C.[Chao],
Ju, Q.[Quan],
Orthogonal moments based on exponent functions:
Exponent-Fourier moments,
PR(47), No. 8, 2014, pp. 2596-2606.
Elsevier DOI
1405
BibRef
And: A1, A4, A3, Only:
Errata and Comments:
Errata and comments on 'Errata and comments on Orthogonal moments
based on exponent functions: Exponent-Fourier moments',
PR(52), No. 1, 2016, pp. 471-476.
Elsevier DOI
1601
Exponent-Fourier moments
Orthogonal moments
BibRef
Xiao, B.[Bin],
Li, W.S.[Wei-Sheng],
Wang, G.Y.[Guo-Yin],
Errata and comments on 'Orthogonal moments based on exponent functions:
Exponent-Fourier moments',
PR(48), No. 4, 2015, pp. 1571-1573.
Elsevier DOI
1502
Orthogonal moments.
Comments:
See also Orthogonal moments based on exponent functions: Exponent-Fourier moments.
BibRef
Shao, Z.H.[Zhu-Hong],
Shu, H.Z.[Hua-Zhong],
Wu, J.S.[Jia-Song],
Chen, B.J.[Bei-Jing],
Coatrieux, J.L.[Jean Louis],
Quaternion Bessel-Fourier moments and their invariant descriptors for
object reconstruction and recognition,
PR(47), No. 2, 2014, pp. 603-611.
Elsevier DOI
1311
Quaternion Bessel-Fourier moment
BibRef
Wang, T.S.[Tian-Sheng],
Liao, S.[Simon],
Computational aspects of exponent-Fourier moments,
PRL(84), No. 1, 2016, pp. 35-42.
Elsevier DOI
1612
Orthogonal Exponent-Fourier moments
BibRef
Zhu, H.Q.[Hong-Qing],
Yang, Y.[Yan],
Gui, Z.G.[Zhi-Guo],
Zhu, Y.[Yu],
Chen, Z.H.[Zhi-Hua],
Image analysis by generalized Chebyshev-Fourier and generalized
pseudo-Jacobi-Fourier moments,
PR(51), No. 1, 2016, pp. 1-11.
Elsevier DOI
1601
Generalized radial polynomial
BibRef
Camacho-Bello, C.,
Exact Legendre-Fourier moments in improved polar pixels configuration
for image analysis,
IET-IPR(13), No. 1, January 2019, pp. 118-124.
DOI Link
1812
BibRef
Hosny, K.M.[Khalid M],
Darwish, M.M.[Mohamed M],
Aboelenen, T.[Tarek],
New fractional-order Legendre-Fourier moments for pattern recognition
applications,
PR(103), 2020, pp. 107324.
Elsevier DOI
2005
Color image descriptors,
Rotation invariance, Fractional-order moments, Legendre-Fourier moments
BibRef
He, B.[Bing],
Cui, J.T.[Jiang-Tao],
Peng, Y.[Yanguo],
Yang, T.F.[Teng-Fei],
Image analysis by fast improved radial harmonic-Fourier moments
algorithm,
IJIST(30), No. 4, 2020, pp. 1033-1045.
DOI Link
2011
computation complexity, image reconstruction,
numerical instability, radial harmonic-Fourier moments
BibRef
Wang, C.,
Wang, X.,
Xia, Z.,
Ma, B.,
Shi, Y.Q.,
Image Description With Polar Harmonic Fourier Moments,
CirSysVideo(30), No. 12, December 2020, pp. 4440-4452.
IEEE DOI
2012
Image reconstruction, Harmonic analysis, Object recognition,
Image recognition, Kernel
BibRef
Yang, H.Y.[Hong-Ying],
Qi, S.[Shuren],
Tian, J.L.[Jia-Lin],
Niu, P.P.[Pan-Pan],
Wang, X.Y.[Xiang-Yang],
Robust and discriminative image representation:
Fractional-Order Jacobi-Fourier moments,
PR(115), 2021, pp. 107898.
Elsevier DOI
2104
Image representation, Fractional, Jacobi-Fourier moments,
Robustness, Discriminability
BibRef
Yang, T.F.[Teng-Fei],
Liu, Z.Q.[Zhi-Quan],
Guo, J.J.[Jing-Jing],
Yu, Y.[Yong],
Ren, F.[Fang],
Wang, T.[Teng],
Image analysis by fractional-order weighted spherical Bessel-Fourier
moments,
PR(157), 2025, pp. 110872.
Elsevier DOI
2409
Fractional-order weighted spherical Bessel-Fourier moments,
Quaternion fractional-order weighted spherical Bessel-Fourier moments,
Image recognition
BibRef
Yang, J.W.[Jian-Wei],
Yuan, X.[Xin],
Lu, X.Q.[Xiao-Qi],
Tang, Y.Y.[Yuan Yan],
Adjustable Jacobi-Fourier Moment for Image Representation,
Cyber(55), No. 1, January 2025, pp. 207-220.
IEEE DOI
2501
Kernel, Data mining, Image reconstruction, Feature extraction,
Image representation, Jacobian matrices, Robustness, Noise, zeros distribution
BibRef
Chapter on Registration, Matching and Recognition Using Points, Lines, Regions, Areas, Surfaces continues in
Matching, Descriptions Using Moments .